data_preprocessing.py 28.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Preprocess dataset and construct any necessary artifacts."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import atexit
import contextlib
import gc
24
import hashlib
25
26
27
28
29
import multiprocessing
import json
import os
import pickle
import signal
30
import socket
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import subprocess
import time
import timeit
import typing

# pylint: disable=wrong-import-order
from absl import app as absl_app
from absl import flags
import numpy as np
import pandas as pd
import six
import tensorflow as tf
# pylint: enable=wrong-import-order

from official.datasets import movielens
from official.recommendation import constants as rconst
from official.recommendation import stat_utils
48
from official.recommendation import popen_helper
49
from official.utils.logs import mlperf_helper
50
51


52
53
54
55
56
57
58
59
60
DATASET_TO_NUM_USERS_AND_ITEMS = {
    "ml-1m": (6040, 3706),
    "ml-20m": (138493, 26744)
}


# Number of batches to run per epoch when using synthetic data. At high batch
# sizes, we run for more batches than with real data, which is good since
# running more batches reduces noise when measuring the average batches/second.
61
SYNTHETIC_BATCHES_PER_EPOCH = 2000
62
63


64
65
66
67
class NCFDataset(object):
  """Container for training and testing data."""

  def __init__(self, user_map, item_map, num_data_readers, cache_paths,
68
               num_train_positives, deterministic=False):
69
    # type: (dict, dict, int, rconst.Paths, int, bool) -> None
70
71
72
73
74
75
76
    """Assign key values for recommendation dataset.

    Args:
      user_map: Dict mapping raw user ids to regularized ids.
      item_map: Dict mapping raw item ids to regularized ids.
      num_data_readers: The number of reader Datasets used during training.
      cache_paths: Object containing locations for various cache files.
77
78
      num_train_positives: The number of positive training examples in the
        dataset.
79
80
      deterministic: Operations should use deterministic, order preserving
        methods, even at the cost of performance.
81
82
83
84
85
86
87
88
89
    """

    self.user_map = {int(k): int(v) for k, v in user_map.items()}
    self.item_map = {int(k): int(v) for k, v in item_map.items()}
    self.num_users = len(user_map)
    self.num_items = len(item_map)
    self.num_data_readers = num_data_readers
    self.cache_paths = cache_paths
    self.num_train_positives = num_train_positives
90
    self.deterministic = deterministic
91
92


93
94
def _filter_index_sort(raw_rating_path, match_mlperf):
  # type: (str, bool) -> (pd.DataFrame, dict, dict)
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
  """Read in data CSV, and output structured data.

  This function reads in the raw CSV of positive items, and performs three
  preprocessing transformations:

  1)  Filter out all users who have not rated at least a certain number
      of items. (Typically 20 items)

  2)  Zero index the users and items such that the largest user_id is
      `num_users - 1` and the largest item_id is `num_items - 1`

  3)  Sort the dataframe by user_id, with timestamp as a secondary sort key.
      This allows the dataframe to be sliced by user in-place, and for the last
      item to be selected simply by calling the `-1` index of a user's slice.

  While all of these transformations are performed by Pandas (and are therefore
  single-threaded), they only take ~2 minutes, and the overhead to apply a
  MapReduce pattern to parallel process the dataset adds significant complexity
  for no computational gain. For a larger dataset parallelizing this
  preprocessing could yield speedups. (Also, this preprocessing step is only
  performed once for an entire run.

  Args:
    raw_rating_path: The path to the CSV which contains the raw dataset.
119
120
    match_mlperf: If True, change the sorting algorithm to match the MLPerf
      reference implementation.
121
122

  Returns:
Reed's avatar
Reed committed
123
124
125
    A filtered, zero-index remapped, sorted dataframe, a dict mapping raw user
    IDs to regularized user IDs, and a dict mapping raw item IDs to regularized
    item IDs.
126
127
128
129
130
131
132
133
134
135
136
137
  """
  with tf.gfile.Open(raw_rating_path) as f:
    df = pd.read_csv(f)

  # Get the info of users who have more than 20 ratings on items
  grouped = df.groupby(movielens.USER_COLUMN)
  df = grouped.filter(
      lambda x: len(x) >= rconst.MIN_NUM_RATINGS) # type: pd.DataFrame

  original_users = df[movielens.USER_COLUMN].unique()
  original_items = df[movielens.ITEM_COLUMN].unique()

138
139
140
  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.PREPROC_HP_MIN_RATINGS,
                          value=rconst.MIN_NUM_RATINGS)

141
142
143
144
145
146
147
148
149
150
151
152
153
  # Map the ids of user and item to 0 based index for following processing
  tf.logging.info("Generating user_map and item_map...")
  user_map = {user: index for index, user in enumerate(original_users)}
  item_map = {item: index for index, item in enumerate(original_items)}

  df[movielens.USER_COLUMN] = df[movielens.USER_COLUMN].apply(
      lambda user: user_map[user])
  df[movielens.ITEM_COLUMN] = df[movielens.ITEM_COLUMN].apply(
      lambda item: item_map[item])

  num_users = len(original_users)
  num_items = len(original_items)

154
  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.PREPROC_HP_NUM_EVAL,
155
                          value=rconst.NUM_EVAL_NEGATIVES)
156
157
158
159
  mlperf_helper.ncf_print(
      key=mlperf_helper.TAGS.PREPROC_HP_SAMPLE_EVAL_REPLACEMENT,
      value=match_mlperf)

160
161
162
163
164
165
166
167
  assert num_users <= np.iinfo(np.int32).max
  assert num_items <= np.iinfo(np.uint16).max
  assert df[movielens.USER_COLUMN].max() == num_users - 1
  assert df[movielens.ITEM_COLUMN].max() == num_items - 1

  # This sort is used to shard the dataframe by user, and later to select
  # the last item for a user to be used in validation.
  tf.logging.info("Sorting by user, timestamp...")
168
169
170
171
172
173
174
175
176
177
178
179

  if match_mlperf:
    # This sort is equivalent to the non-MLPerf sort, except that the order of
    # items with the same user and timestamp are sometimes different. For some
    # reason, this sort results in a better hit-rate during evaluation, matching
    # the performance of the MLPerf reference implementation.
    df.sort_values(by=movielens.TIMESTAMP_COLUMN, inplace=True)
    df.sort_values([movielens.USER_COLUMN, movielens.TIMESTAMP_COLUMN],
                   inplace=True, kind="mergesort")
  else:
    df.sort_values([movielens.USER_COLUMN, movielens.TIMESTAMP_COLUMN],
                   inplace=True)
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

  df = df.reset_index()  # The dataframe does not reconstruct indicies in the
  # sort or filter steps.

  return df, user_map, item_map


def _train_eval_map_fn(args):
  """Split training and testing data and generate testing negatives.

  This function is called as part of a multiprocessing map. The principle
  input is a shard, which contains a sorted array of users and corresponding
  items for each user, where items have already been sorted in ascending order
  by timestamp. (Timestamp is not passed to avoid the serialization cost of
  sending it to the map function.)

  For each user, all but the last item is written into a pickle file which the
  training data producer can consume on as needed. The last item for a user
198
199
  is a validation point; it is written under a separate key and will be used
  later to generate the evaluation data.
200
201
202
203
204
205
206

  Args:
    shard: A dict containing the user and item arrays.
    shard_id: The id of the shard provided. This is used to number the training
      shard pickle files.
    num_items: The cardinality of the item set, which determines the set from
      which validation negatives should be drawn.
Reed's avatar
Reed committed
207
208
    cache_paths: rconst.Paths object containing locations for various cache
      files.
209
210
211

  """

212
  shard, shard_id, num_items, cache_paths = args
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

  users = shard[movielens.USER_COLUMN]
  items = shard[movielens.ITEM_COLUMN]

  # This produces index boundaries which can be used to slice by user.
  delta = users[1:] - users[:-1]
  boundaries = ([0] + (np.argwhere(delta)[:, 0] + 1).tolist() +
                [users.shape[0]])

  train_blocks = []
  test_positives = []
  for i in range(len(boundaries) - 1):
    # This is simply a vector of repeated values such that the shard could be
    # represented compactly with a tuple of tuples:
    #   ((user_id, items), (user_id, items), ...)
    # rather than:
    #   user_id_vector, item_id_vector
    # However the additional nested structure significantly increases the
    # serialization and deserialization cost such that it is not worthwhile.
    block_user = users[boundaries[i]:boundaries[i+1]]
    assert len(set(block_user)) == 1

    block_items = items[boundaries[i]:boundaries[i+1]]
    train_blocks.append((block_user[:-1], block_items[:-1]))
    test_positives.append((block_user[0], block_items[-1]))

  train_users = np.concatenate([i[0] for i in train_blocks])
  train_items = np.concatenate([i[1] for i in train_blocks])

242
243
244
245
246
  test_pos_users = np.array([i[0] for i in test_positives],
                            dtype=train_users.dtype)
  test_pos_items = np.array([i[1] for i in test_positives],
                            dtype=train_items.dtype)

247
248
249
250
251
  train_shard_fpath = cache_paths.train_shard_template.format(
      str(shard_id).zfill(5))

  with tf.gfile.Open(train_shard_fpath, "wb") as f:
    pickle.dump({
252
253
254
255
256
257
258
259
        rconst.TRAIN_KEY: {
            movielens.USER_COLUMN: train_users,
            movielens.ITEM_COLUMN: train_items,
        },
        rconst.EVAL_KEY: {
            movielens.USER_COLUMN: test_pos_users,
            movielens.ITEM_COLUMN: test_pos_items,
        }
260
261
262
    }, f)


263
264
265
def generate_train_eval_data(df, approx_num_shards, num_items, cache_paths,
                             match_mlperf):
  # type: (pd.DataFrame, int, int, rconst.Paths, bool) -> None
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
  """Construct training and evaluation datasets.

  This function manages dataset construction and validation that the
  transformations have produced correct results. The particular logic of
  transforming the data is performed in _train_eval_map_fn().

  Args:
    df: The dataframe containing the entire dataset. It is essential that this
      dataframe be produced by _filter_index_sort(), as subsequent
      transformations rely on `df` having particular structure.
    approx_num_shards: The approximate number of similarly sized shards to
      construct from `df`. The MovieLens has severe imbalances where some users
      have interacted with many items; this is common among datasets involving
      user data. Rather than attempt to aggressively balance shard size, this
      function simply allows shards to "overflow" which can produce a number of
      shards which is less than `approx_num_shards`. This small degree of
      imbalance does not impact performance; however it does mean that one
      should not expect approx_num_shards to be the ACTUAL number of shards.
    num_items: The cardinality of the item set.
Reed's avatar
Reed committed
285
286
    cache_paths: rconst.Paths object containing locations for various cache
      files.
287
288
    match_mlperf: If True, sample eval negative with replacements, which the
      MLPerf reference implementation does.
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
  """

  num_rows = len(df)
  approximate_partitions = np.linspace(
      0, num_rows, approx_num_shards + 1).astype("int")
  start_ind, end_ind = 0, 0
  shards = []

  for i in range(1, approx_num_shards + 1):
    end_ind = approximate_partitions[i]
    while (end_ind < num_rows and df[movielens.USER_COLUMN][end_ind - 1] ==
           df[movielens.USER_COLUMN][end_ind]):
      end_ind += 1

    if end_ind <= start_ind:
      continue  # imbalance from prior shard.

    df_shard = df[start_ind:end_ind]
    user_shard = df_shard[movielens.USER_COLUMN].values.astype(np.int32)
    item_shard = df_shard[movielens.ITEM_COLUMN].values.astype(np.uint16)

    shards.append({
        movielens.USER_COLUMN: user_shard,
        movielens.ITEM_COLUMN: item_shard,
    })

    start_ind = end_ind
  assert end_ind == num_rows
  approx_num_shards = len(shards)

  tf.logging.info("Splitting train and test data and generating {} test "
                  "negatives per user...".format(rconst.NUM_EVAL_NEGATIVES))
  tf.gfile.MakeDirs(cache_paths.train_shard_subdir)

323
  map_args = [(shards[i], i, num_items, cache_paths)
324
              for i in range(approx_num_shards)]
325

326
327
  with popen_helper.get_pool(multiprocessing.cpu_count()) as pool:
    pool.map(_train_eval_map_fn, map_args)  # pylint: disable=no-member
328
329


330
def construct_cache(dataset, data_dir, num_data_readers, match_mlperf,
331
                    deterministic, cache_id=None):
332
  # type: (str, str, int, bool, bool, typing.Optional[int]) -> NCFDataset
333
334
335
336
337
338
339
  """Load and digest data CSV into a usable form.

  Args:
    dataset: The name of the dataset to be used.
    data_dir: The root directory of the dataset.
    num_data_readers: The number of parallel processes which will request
      data during training.
340
341
    match_mlperf: If True, change the behavior of the cache construction to
      match the MLPerf reference implementation.
342
343
    deterministic: Try to enforce repeatable behavior, even at the cost of
      performance.
344
  """
345
  cache_paths = rconst.Paths(data_dir=data_dir, cache_id=cache_id)
346
347
  num_data_readers = (num_data_readers or int(multiprocessing.cpu_count() / 2)
                      or 1)
348
349
350
351
352
353
354
355
356
357
358
359
  approx_num_shards = int(movielens.NUM_RATINGS[dataset]
                          // rconst.APPROX_PTS_PER_TRAIN_SHARD) or 1

  st = timeit.default_timer()
  cache_root = os.path.join(data_dir, cache_paths.cache_root)
  if tf.gfile.Exists(cache_root):
    raise ValueError("{} unexpectedly already exists."
                     .format(cache_paths.cache_root))
  tf.logging.info("Creating cache directory. This should be deleted on exit.")
  tf.gfile.MakeDirs(cache_paths.cache_root)

  raw_rating_path = os.path.join(data_dir, dataset, movielens.RATINGS_FILE)
360
  df, user_map, item_map = _filter_index_sort(raw_rating_path, match_mlperf)
361
362
363
364
365
366
367
368
  num_users, num_items = DATASET_TO_NUM_USERS_AND_ITEMS[dataset]

  if num_users != len(user_map):
    raise ValueError("Expected to find {} users, but found {}".format(
        num_users, len(user_map)))
  if num_items != len(item_map):
    raise ValueError("Expected to find {} items, but found {}".format(
        num_items, len(item_map)))
369
370

  generate_train_eval_data(df=df, approx_num_shards=approx_num_shards,
371
372
                           num_items=len(item_map), cache_paths=cache_paths,
                           match_mlperf=match_mlperf)
373
374
375
376
377
  del approx_num_shards  # value may have changed.

  ncf_dataset = NCFDataset(user_map=user_map, item_map=item_map,
                           num_data_readers=num_data_readers,
                           cache_paths=cache_paths,
378
379
                           num_train_positives=len(df) - len(user_map),
                           deterministic=deterministic)
380
381
382
383
384
385
386
387
388
389
390
391
392

  run_time = timeit.default_timer() - st
  tf.logging.info("Cache construction complete. Time: {:.1f} sec."
                  .format(run_time))

  return ncf_dataset


def _shutdown(proc):
  # type: (subprocess.Popen) -> None
  """Convenience function to cleanly shut down async generation process."""

  tf.logging.info("Shutting down train data creation subprocess.")
393
  try:
394
395
396
    try:
      proc.send_signal(signal.SIGINT)
      time.sleep(5)
397
398
      if proc.poll() is not None:
        tf.logging.info("Train data creation subprocess ended")
399
        return  # SIGINT was handled successfully within 5 seconds
400

401
402
    except socket.error:
      pass
403

404
405
406
    # Otherwise another second of grace period and then force kill the process.
    time.sleep(1)
    proc.terminate()
407
    tf.logging.info("Train data creation subprocess killed")
408
409
  except:  # pylint: disable=broad-except
    tf.logging.error("Data generation subprocess could not be killed.")
410
411


412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432

def write_flagfile(flags_, ncf_dataset):
  """Write flagfile to begin async data generation."""
  if ncf_dataset.deterministic:
    flags_["seed"] = stat_utils.random_int32()

  # We write to a temp file then atomically rename it to the final file,
  # because writing directly to the final file can cause the data generation
  # async process to read a partially written JSON file.
  flagfile_temp = os.path.join(ncf_dataset.cache_paths.cache_root,
                               rconst.FLAGFILE_TEMP)
  tf.logging.info("Preparing flagfile for async data generation in {} ..."
                  .format(flagfile_temp))
  with tf.gfile.Open(flagfile_temp, "w") as f:
    for k, v in six.iteritems(flags_):
      f.write("--{}={}\n".format(k, v))
  flagfile = os.path.join(ncf_dataset.cache_paths.cache_root, rconst.FLAGFILE)
  tf.gfile.Rename(flagfile_temp, flagfile)
  tf.logging.info(
      "Wrote flagfile for async data generation in {}.".format(flagfile))

433
def instantiate_pipeline(dataset, data_dir, batch_size, eval_batch_size,
434
435
436
437
                         num_cycles, num_data_readers=None, num_neg=4,
                         epochs_per_cycle=1, match_mlperf=False,
                         deterministic=False, use_subprocess=True,
                         cache_id=None):
438
  # type: (...) -> (NCFDataset, typing.Callable)
439
440
441
  """Preprocess data and start negative generation subprocess."""

  tf.logging.info("Beginning data preprocessing.")
442
  tf.gfile.MakeDirs(data_dir)
443
  ncf_dataset = construct_cache(dataset=dataset, data_dir=data_dir,
444
                                num_data_readers=num_data_readers,
445
                                match_mlperf=match_mlperf,
446
447
                                deterministic=deterministic,
                                cache_id=cache_id)
448
449
  # By limiting the number of workers we guarantee that the worker
  # pool underlying the training generation doesn't starve other processes.
450
  num_workers = int(multiprocessing.cpu_count() * 0.75) or 1
451

452
453
454
455
456
457
  flags_ = {
      "data_dir": data_dir,
      "cache_id": ncf_dataset.cache_paths.cache_id,
      "num_neg": num_neg,
      "num_train_positives": ncf_dataset.num_train_positives,
      "num_items": ncf_dataset.num_items,
458
      "num_users": ncf_dataset.num_users,
459
460
      "num_readers": ncf_dataset.num_data_readers,
      "epochs_per_cycle": epochs_per_cycle,
461
      "num_cycles": num_cycles,
462
463
464
465
466
      "train_batch_size": batch_size,
      "eval_batch_size": eval_batch_size,
      "num_workers": num_workers,
      "redirect_logs": use_subprocess,
      "use_tf_logging": not use_subprocess,
467
      "ml_perf": match_mlperf,
Reed's avatar
Reed committed
468
      "output_ml_perf_compliance_logging": mlperf_helper.LOGGER.enabled,
469
  }
470

471
472
473
474
475
476
477
478
  if use_subprocess:
    tf.logging.info("Creating training file subprocess.")
    subproc_env = os.environ.copy()
    # The subprocess uses TensorFlow for tf.gfile, but it does not need GPU
    # resources and by default will try to allocate GPU memory. This would cause
    # contention with the main training process.
    subproc_env["CUDA_VISIBLE_DEVICES"] = ""
    subproc_args = popen_helper.INVOCATION + [
479
480
        "--data_dir", data_dir,
        "--cache_id", str(ncf_dataset.cache_paths.cache_id)]
481
482
483
484
    tf.logging.info(
        "Generation subprocess command: {}".format(" ".join(subproc_args)))
    proc = subprocess.Popen(args=subproc_args, shell=False, env=subproc_env)

485
486
487
488
489
490
491
  cleanup_called = {"finished": False}
  @atexit.register
  def cleanup():
    """Remove files and subprocess from data generation."""
    if cleanup_called["finished"]:
      return

492
493
494
    if use_subprocess:
      _shutdown(proc)

495
496
497
498
499
500
    try:
      tf.gfile.DeleteRecursively(ncf_dataset.cache_paths.cache_root)
    except tf.errors.NotFoundError:
      pass

    cleanup_called["finished"] = True
501

502
  for _ in range(300):
503
504
505
506
507
508
509
    if tf.gfile.Exists(ncf_dataset.cache_paths.subproc_alive):
      break
    time.sleep(1)  # allow `alive` file to be written
  if not tf.gfile.Exists(ncf_dataset.cache_paths.subproc_alive):
    raise ValueError("Generation subprocess did not start correctly. Data will "
                     "not be available; exiting to avoid waiting forever.")

510
511
512
513
  # We start the async process and wait for it to signal that it is alive. It
  # will then enter a loop waiting for the flagfile to be written. Once we see
  # that the async process has signaled that it is alive, we clear the system
  # caches and begin the run.
514
  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.RUN_CLEAR_CACHES)
515
516
517
518
  mlperf_helper.clear_system_caches()
  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.RUN_START)
  write_flagfile(flags_, ncf_dataset)

519
  return ncf_dataset, cleanup
520
521
522
523
524
525
526
527
528
529


def make_deserialize(params, batch_size, training=False):
  """Construct deserialize function for training and eval fns."""
  feature_map = {
      movielens.USER_COLUMN: tf.FixedLenFeature([], dtype=tf.string),
      movielens.ITEM_COLUMN: tf.FixedLenFeature([], dtype=tf.string),
  }
  if training:
    feature_map["labels"] = tf.FixedLenFeature([], dtype=tf.string)
530
531
  else:
    feature_map[rconst.DUPLICATE_MASK] = tf.FixedLenFeature([], dtype=tf.string)
532
533
534
535
536
537
538
539
540

  def deserialize(examples_serialized):
    """Called by Dataset.map() to convert batches of records to tensors."""
    features = tf.parse_single_example(examples_serialized, feature_map)
    users = tf.reshape(tf.decode_raw(
        features[movielens.USER_COLUMN], tf.int32), (batch_size,))
    items = tf.reshape(tf.decode_raw(
        features[movielens.ITEM_COLUMN], tf.uint16), (batch_size,))

Reed's avatar
Reed committed
541
542
    if params["use_tpu"] or params["use_xla_for_gpu"]:
      items = tf.cast(items, tf.int32)  # TPU and XLA disallows uint16 infeed.
543
544

    if not training:
545
546
      dupe_mask = tf.reshape(tf.cast(tf.decode_raw(
          features[rconst.DUPLICATE_MASK], tf.int8), tf.bool), (batch_size,))
547
548
549
      return {
          movielens.USER_COLUMN: users,
          movielens.ITEM_COLUMN: items,
550
          rconst.DUPLICATE_MASK: dupe_mask,
551
552
553
554
      }

    labels = tf.reshape(tf.cast(tf.decode_raw(
        features["labels"], tf.int8), tf.bool), (batch_size,))
555

556
557
558
559
560
561
562
    return {
        movielens.USER_COLUMN: users,
        movielens.ITEM_COLUMN: items,
    }, labels
  return deserialize


563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
def hash_pipeline(dataset, deterministic):
  # type: (tf.data.Dataset, bool) -> None
  """Utility function for detecting non-determinism in the data pipeline.

  Args:
    dataset: a tf.data.Dataset generated by the input_fn
    deterministic: Does the input_fn expect the dataset to be deterministic.
      (i.e. fixed seed, sloppy=False, etc.)
  """
  if not deterministic:
    tf.logging.warning("Data pipeline is not marked as deterministic. Hash "
                       "values are not expected to be meaningful.")

  batch = dataset.make_one_shot_iterator().get_next()
  md5 = hashlib.md5()
  count = 0
  first_batch_hash = b""
  with tf.Session() as sess:
    while True:
      try:
        result = sess.run(batch)
        if isinstance(result, tuple):
          result = result[0]  # only hash features
      except tf.errors.OutOfRangeError:
        break

      count += 1
      md5.update(memoryview(result[movielens.USER_COLUMN]).tobytes())
      md5.update(memoryview(result[movielens.ITEM_COLUMN]).tobytes())
      if count == 1:
        first_batch_hash = md5.hexdigest()
  overall_hash = md5.hexdigest()
  tf.logging.info("Batch count: {}".format(count))
  tf.logging.info("  [pipeline_hash] First batch hash: {}".format(
      first_batch_hash))
  tf.logging.info("  [pipeline_hash] All batches hash: {}".format(overall_hash))


601
602
603
604
605
606
def make_input_fn(
    ncf_dataset,       # type: typing.Optional[NCFDataset]
    is_training,       # type: bool
    record_files=None  # type: typing.Optional[tf.Tensor]
    ):
  # type: (...) -> (typing.Callable, str, int)
607
608
  """Construct training input_fn for the current epoch."""

609
  if ncf_dataset is None:
610
    return make_synthetic_input_fn(is_training)
611

612
613
614
615
  if record_files is not None:
    epoch_metadata = None
    batch_count = None
    record_dir = None
616
  else:
617
618
619
620
621
622
    epoch_metadata, record_dir, template = get_epoch_info(is_training,
                                                          ncf_dataset)
    record_files = os.path.join(record_dir, template.format("*"))
    # This value is used to check that the batch count from the subprocess
    # matches the batch count expected by the main thread.
    batch_count = epoch_metadata["batch_count"]
623
624
625
626


  def input_fn(params):
    """Generated input_fn for the given epoch."""
627
628
629
630
631
632
    if is_training:
      batch_size = params["batch_size"]
    else:
      # Estimator has "eval_batch_size" included in the params, but TPUEstimator
      # populates "batch_size" to the appropriate value.
      batch_size = params.get("eval_batch_size") or params["batch_size"]
633

634
    if epoch_metadata and epoch_metadata["batch_size"] != batch_size:
635
636
637
638
639
      raise ValueError(
          "Records were constructed with batch size {}, but input_fn was given "
          "a batch size of {}. This will result in a deserialization error in "
          "tf.parse_single_example."
          .format(epoch_metadata["batch_size"], batch_size))
640
    record_files_ds = tf.data.Dataset.list_files(record_files, shuffle=False)
641

642
    interleave = tf.data.experimental.parallel_interleave(
643
644
645
        tf.data.TFRecordDataset,
        cycle_length=4,
        block_length=100000,
646
        sloppy=not ncf_dataset.deterministic,
647
648
649
        prefetch_input_elements=4,
    )

650
    deserialize = make_deserialize(params, batch_size, is_training)
651
    dataset = record_files_ds.apply(interleave)
652
    dataset = dataset.map(deserialize, num_parallel_calls=4)
653
654
655
656
657
658
    dataset = dataset.prefetch(32)

    if params.get("hash_pipeline"):
      hash_pipeline(dataset, ncf_dataset.deterministic)

    return dataset
659
660
661
662

  return input_fn, record_dir, batch_count


663
664
665
666
667
668
669
670
671
672
def _check_subprocess_alive(ncf_dataset, directory):
  if (not tf.gfile.Exists(ncf_dataset.cache_paths.subproc_alive) and
      not tf.gfile.Exists(directory)):
    # The generation subprocess must have been alive at some point, because we
    # earlier checked that the subproc_alive file existed.
    raise ValueError("Generation subprocess unexpectedly died. Data will not "
                     "be available; exiting to avoid waiting forever.")



673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
def get_epoch_info(is_training, ncf_dataset):
  """Wait for the epoch input data to be ready and return various info about it.

  Args:
    is_training: If we should return info for a training or eval epoch.
    ncf_dataset: An NCFDataset.

  Returns:
    epoch_metadata: A dict with epoch metadata.
    record_dir: The directory with the TFRecord files storing the input data.
    template: A string template of the files in `record_dir`.
      `template.format('*')` is a glob that matches all the record files.
  """
  if is_training:
    train_epoch_dir = ncf_dataset.cache_paths.train_epoch_dir
688
689
    _check_subprocess_alive(ncf_dataset, train_epoch_dir)

690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
    while not tf.gfile.Exists(train_epoch_dir):
      tf.logging.info("Waiting for {} to exist.".format(train_epoch_dir))
      time.sleep(1)

    train_data_dirs = tf.gfile.ListDirectory(train_epoch_dir)
    while not train_data_dirs:
      tf.logging.info("Waiting for data folder to be created.")
      time.sleep(1)
      train_data_dirs = tf.gfile.ListDirectory(train_epoch_dir)
    train_data_dirs.sort()  # names are zfilled so that
                            # lexicographic sort == numeric sort
    record_dir = os.path.join(train_epoch_dir, train_data_dirs[0])
    template = rconst.TRAIN_RECORD_TEMPLATE
  else:
    record_dir = ncf_dataset.cache_paths.eval_data_subdir
705
    _check_subprocess_alive(ncf_dataset, record_dir)
706
707
708
709
710
711
712
713
714
715
716
717
    template = rconst.EVAL_RECORD_TEMPLATE

  ready_file = os.path.join(record_dir, rconst.READY_FILE)
  while not tf.gfile.Exists(ready_file):
    tf.logging.info("Waiting for records in {} to be ready".format(record_dir))
    time.sleep(1)

  with tf.gfile.Open(ready_file, "r") as f:
    epoch_metadata = json.load(f)
  return epoch_metadata, record_dir, template


718
def make_synthetic_input_fn(is_training):
719
720
721
  """Construct training input_fn that uses synthetic data."""
  def input_fn(params):
    """Generated input_fn for the given epoch."""
722
723
    batch_size = (params["batch_size"] if is_training else
                  params["eval_batch_size"] or params["batch_size"])
724
725
726
727
728
729
730
    num_users = params["num_users"]
    num_items = params["num_items"]

    users = tf.random_uniform([batch_size], dtype=tf.int32, minval=0,
                              maxval=num_users)
    items = tf.random_uniform([batch_size], dtype=tf.int32, minval=0,
                              maxval=num_items)
731

732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
    if is_training:
      labels = tf.random_uniform([batch_size], dtype=tf.int32, minval=0,
                                 maxval=2)
      data = {
          movielens.USER_COLUMN: users,
          movielens.ITEM_COLUMN: items,
      }, labels
    else:
      dupe_mask = tf.cast(tf.random_uniform([batch_size], dtype=tf.int32,
                                            minval=0, maxval=2), tf.bool)
      data = {
          movielens.USER_COLUMN: users,
          movielens.ITEM_COLUMN: items,
          rconst.DUPLICATE_MASK: dupe_mask,
      }
747
748

    dataset = tf.data.Dataset.from_tensors(data).repeat(
749
750
        SYNTHETIC_BATCHES_PER_EPOCH)
    dataset = dataset.prefetch(32)
751
752
    return dataset

753
  return input_fn, None, SYNTHETIC_BATCHES_PER_EPOCH