optimization_config.py 4.6 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Hongkun Yu's avatar
Hongkun Yu committed
14

Abdullah Rashwan's avatar
Abdullah Rashwan committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
"""Dataclasses for optimization configs.

This file define the dataclass for optimization configs (OptimizationConfig).
It also has two helper functions get_optimizer_config, and get_lr_config from
an OptimizationConfig class.
"""
from typing import Optional

import dataclasses

from official.modeling.hyperparams import base_config
from official.modeling.hyperparams import oneof
from official.modeling.optimization.configs import learning_rate_config as lr_cfg
from official.modeling.optimization.configs import optimizer_config as opt_cfg


@dataclasses.dataclass
class OptimizerConfig(oneof.OneOfConfig):
  """Configuration for optimizer.

  Attributes:
    type: 'str', type of optimizer to be used, on the of fields below.
    sgd: sgd optimizer config.
    adam: adam optimizer config.
    adamw: adam with weight decay.
    lamb: lamb optimizer.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
41
    rmsprop: rmsprop optimizer.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
42
    lars: lars optimizer.
Hao Wu's avatar
Hao Wu committed
43
    adagrad: adagrad optimizer.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
44
    slide: slide optimizer.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
45
46
47
  """
  type: Optional[str] = None
  sgd: opt_cfg.SGDConfig = opt_cfg.SGDConfig()
Chen Qian's avatar
Chen Qian committed
48
49
  sgd_experimental: opt_cfg.SGDExperimentalConfig = (
      opt_cfg.SGDExperimentalConfig())
Abdullah Rashwan's avatar
Abdullah Rashwan committed
50
  adam: opt_cfg.AdamConfig = opt_cfg.AdamConfig()
Chen Qian's avatar
Chen Qian committed
51
52
  adam_experimental: opt_cfg.AdamExperimentalConfig = (
      opt_cfg.AdamExperimentalConfig())
Abdullah Rashwan's avatar
Abdullah Rashwan committed
53
54
  adamw: opt_cfg.AdamWeightDecayConfig = opt_cfg.AdamWeightDecayConfig()
  lamb: opt_cfg.LAMBConfig = opt_cfg.LAMBConfig()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
55
  rmsprop: opt_cfg.RMSPropConfig = opt_cfg.RMSPropConfig()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
56
  lars: opt_cfg.LARSConfig = opt_cfg.LARSConfig()
Hao Wu's avatar
Hao Wu committed
57
  adagrad: opt_cfg.AdagradConfig = opt_cfg.AdagradConfig()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
58
  slide: opt_cfg.SLIDEConfig = opt_cfg.SLIDEConfig()
59
  adafactor: opt_cfg.AdafactorConfig = opt_cfg.AdafactorConfig()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
60
61
62
63
64
65
66


@dataclasses.dataclass
class LrConfig(oneof.OneOfConfig):
  """Configuration for lr schedule.

  Attributes:
Yuexin Wu's avatar
Yuexin Wu committed
67
    type: 'str', type of lr schedule to be used, one of the fields below.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
68
    constant: constant learning rate config.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
69
70
71
    stepwise: stepwise learning rate config.
    exponential: exponential learning rate config.
    polynomial: polynomial learning rate config.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
72
    cosine: cosine learning rate config.
73
    power: step^power learning rate config.
Le Hou's avatar
Le Hou committed
74
75
    power_linear: learning rate config of step^power followed by
      step^power*linear.
Le Hou's avatar
Le Hou committed
76
    power_with_offset: power decay with a step offset.
Yeqing Li's avatar
Yeqing Li committed
77
    step_cosine_with_offset: Step cosine with a step offset.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
78
79
  """
  type: Optional[str] = None
Abdullah Rashwan's avatar
Abdullah Rashwan committed
80
  constant: lr_cfg.ConstantLrConfig = lr_cfg.ConstantLrConfig()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
81
82
83
  stepwise: lr_cfg.StepwiseLrConfig = lr_cfg.StepwiseLrConfig()
  exponential: lr_cfg.ExponentialLrConfig = lr_cfg.ExponentialLrConfig()
  polynomial: lr_cfg.PolynomialLrConfig = lr_cfg.PolynomialLrConfig()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
84
  cosine: lr_cfg.CosineLrConfig = lr_cfg.CosineLrConfig()
85
  power: lr_cfg.DirectPowerLrConfig = lr_cfg.DirectPowerLrConfig()
Le Hou's avatar
Le Hou committed
86
87
  power_linear: lr_cfg.PowerAndLinearDecayLrConfig = (
      lr_cfg.PowerAndLinearDecayLrConfig())
Le Hou's avatar
Le Hou committed
88
89
  power_with_offset: lr_cfg.PowerDecayWithOffsetLrConfig = (
      lr_cfg.PowerDecayWithOffsetLrConfig())
Yeqing Li's avatar
Yeqing Li committed
90
91
  step_cosine_with_offset: lr_cfg.StepCosineLrConfig = (
      lr_cfg.StepCosineLrConfig())
Abdullah Rashwan's avatar
Abdullah Rashwan committed
92
93
94
95
96
97
98


@dataclasses.dataclass
class WarmupConfig(oneof.OneOfConfig):
  """Configuration for lr schedule.

  Attributes:
Yuexin Wu's avatar
Yuexin Wu committed
99
    type: 'str', type of warmup schedule to be used, one of the fields below.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
100
    linear: linear warmup config.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
101
    polynomial: polynomial warmup config.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
102
103
104
  """
  type: Optional[str] = None
  linear: lr_cfg.LinearWarmupConfig = lr_cfg.LinearWarmupConfig()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
105
  polynomial: lr_cfg.PolynomialWarmupConfig = lr_cfg.PolynomialWarmupConfig()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
106
107
108
109
110
111
112
113


@dataclasses.dataclass
class OptimizationConfig(base_config.Config):
  """Configuration for optimizer and learning rate schedule.

  Attributes:
    optimizer: optimizer oneof config.
Hao Wu's avatar
Hao Wu committed
114
115
    ema: optional exponential moving average optimizer config, if specified, ema
      optimizer will be used.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
116
117
118
119
    learning_rate: learning rate oneof config.
    warmup: warmup oneof config.
  """
  optimizer: OptimizerConfig = OptimizerConfig()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
120
  ema: Optional[opt_cfg.EMAConfig] = None
Abdullah Rashwan's avatar
Abdullah Rashwan committed
121
122
  learning_rate: LrConfig = LrConfig()
  warmup: WarmupConfig = WarmupConfig()