efficientnet.py 10.9 KB
Newer Older
Abdullah Rashwan's avatar
Abdullah Rashwan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains definitions of EfficientNet Networks."""

import math
# Import libraries
import tensorflow as tf
from official.modeling import tf_utils
Yeqing Li's avatar
Yeqing Li committed
21
from official.vision.beta.modeling.backbones import factory
Abdullah Rashwan's avatar
Abdullah Rashwan committed
22
from official.vision.beta.modeling.layers import nn_blocks
23
from official.vision.beta.modeling.layers import nn_layers
Abdullah Rashwan's avatar
Abdullah Rashwan committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

layers = tf.keras.layers

# The fixed EfficientNet-B0 architecture discovered by NAS.
# Each element represents a specification of a building block:
# (block_fn, block_repeats, kernel_size, strides, expand_ratio, in_filters,
# out_filters, is_output)
EN_B0_BLOCK_SPECS = [
    ('mbconv', 1, 3, 1, 1, 32, 16, False),
    ('mbconv', 2, 3, 2, 6, 16, 24, True),
    ('mbconv', 2, 5, 2, 6, 24, 40, True),
    ('mbconv', 3, 3, 2, 6, 40, 80, False),
    ('mbconv', 3, 5, 1, 6, 80, 112, True),
    ('mbconv', 4, 5, 2, 6, 112, 192, False),
    ('mbconv', 1, 3, 1, 6, 192, 320, True),
]

SCALING_MAP = {
    'b0': dict(width_scale=1.0, depth_scale=1.0),
    'b1': dict(width_scale=1.0, depth_scale=1.1),
    'b2': dict(width_scale=1.1, depth_scale=1.2),
    'b3': dict(width_scale=1.2, depth_scale=1.4),
    'b4': dict(width_scale=1.4, depth_scale=1.8),
    'b5': dict(width_scale=1.6, depth_scale=2.2),
    'b6': dict(width_scale=1.8, depth_scale=2.6),
    'b7': dict(width_scale=2.0, depth_scale=3.1),
}


def round_repeats(repeats, multiplier, skip=False):
  """Round number of filters based on depth multiplier."""
  if skip or not multiplier:
    return repeats
  return int(math.ceil(multiplier * repeats))


def block_spec_decoder(specs, width_scale, depth_scale):
  """Decode specs for a block."""
  decoded_specs = []
  for s in specs:
    s = s + (
        width_scale,
        depth_scale,
    )
    decoded_specs.append(BlockSpec(*s))
  return decoded_specs


class BlockSpec(object):
  """A container class that specifies the block configuration for MnasNet."""

  def __init__(self, block_fn, block_repeats, kernel_size, strides,
               expand_ratio, in_filters, out_filters, is_output, width_scale,
               depth_scale):
    self.block_fn = block_fn
    self.block_repeats = round_repeats(block_repeats, depth_scale)
    self.kernel_size = kernel_size
    self.strides = strides
    self.expand_ratio = expand_ratio
83
84
    self.in_filters = nn_layers.round_filters(in_filters, width_scale)
    self.out_filters = nn_layers.round_filters(out_filters, width_scale)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    self.is_output = is_output


@tf.keras.utils.register_keras_serializable(package='Vision')
class EfficientNet(tf.keras.Model):
  """Class to build EfficientNet family model."""

  def __init__(self,
               model_id,
               input_specs=layers.InputSpec(shape=[None, None, None, 3]),
               se_ratio=0.0,
               stochastic_depth_drop_rate=0.0,
               kernel_initializer='VarianceScaling',
               kernel_regularizer=None,
               bias_regularizer=None,
               activation='relu',
               use_sync_bn=False,
               norm_momentum=0.99,
               norm_epsilon=0.001,
               **kwargs):
    """EfficientNet initialization function.

    Args:
      model_id: `str` model id of EfficientNet.
      input_specs: `tf.keras.layers.InputSpec` specs of the input tensor.
      se_ratio: `float` squeeze and excitation ratio for inverted bottleneck
        blocks.
      stochastic_depth_drop_rate: `float` drop rate for drop connect layer.
      kernel_initializer: kernel_initializer for convolutional layers.
      kernel_regularizer: tf.keras.regularizers.Regularizer object for Conv2D.
        Default to None.
      bias_regularizer: tf.keras.regularizers.Regularizer object for Conv2d.
        Default to None.
      activation: `str` name of the activation function.
      use_sync_bn: if True, use synchronized batch normalization.
      norm_momentum: `float` normalization omentum for the moving average.
      norm_epsilon: `float` small float added to variance to avoid dividing by
        zero.
      **kwargs: keyword arguments to be passed.
    """
    self._model_id = model_id
    self._input_specs = input_specs
    self._se_ratio = se_ratio
    self._stochastic_depth_drop_rate = stochastic_depth_drop_rate
    self._use_sync_bn = use_sync_bn
    self._activation = activation
    self._kernel_initializer = kernel_initializer
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
    self._kernel_regularizer = kernel_regularizer
    self._bias_regularizer = bias_regularizer
    if use_sync_bn:
      self._norm = layers.experimental.SyncBatchNormalization
    else:
      self._norm = layers.BatchNormalization

    if tf.keras.backend.image_data_format() == 'channels_last':
      bn_axis = -1
    else:
      bn_axis = 1

    # Build EfficientNet.
    inputs = tf.keras.Input(shape=input_specs.shape[1:])
    width_scale = SCALING_MAP[model_id]['width_scale']
    depth_scale = SCALING_MAP[model_id]['depth_scale']

    # Build stem.
    x = layers.Conv2D(
153
        filters=nn_layers.round_filters(32, width_scale),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        kernel_size=3,
        strides=2,
        use_bias=False,
        padding='same',
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer)(
            inputs)
    x = self._norm(
        axis=bn_axis, momentum=norm_momentum, epsilon=norm_epsilon)(
            x)
    x = tf_utils.get_activation(activation)(x)

    # Build intermediate blocks.
    endpoints = {}
    endpoint_level = 2
    decoded_specs = block_spec_decoder(EN_B0_BLOCK_SPECS, width_scale,
                                       depth_scale)

    for i, specs in enumerate(decoded_specs):
      x = self._block_group(
          inputs=x, specs=specs, name='block_group_{}'.format(i))
      if specs.is_output:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
177
        endpoints[str(endpoint_level)] = x
Abdullah Rashwan's avatar
Abdullah Rashwan committed
178
179
180
181
182
183
184
        endpoint_level += 1

    # Build output specs for downstream tasks.
    self._output_specs = {l: endpoints[l].get_shape for l in endpoints.keys()}

    # Build the final conv for classification.
    x = layers.Conv2D(
185
        filters=nn_layers.round_filters(1280, width_scale),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
186
187
188
189
190
191
192
193
194
195
196
        kernel_size=1,
        strides=1,
        use_bias=False,
        padding='same',
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer)(
            x)
    x = self._norm(
        axis=bn_axis, momentum=norm_momentum, epsilon=norm_epsilon)(
            x)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
197
    endpoints[str(endpoint_level)] = tf_utils.get_activation(activation)(x)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

    super(EfficientNet, self).__init__(
        inputs=inputs, outputs=endpoints, **kwargs)

  def _block_group(self, inputs, specs, name='block_group'):
    """Creates one group of blocks for the EfficientNet model.

    Args:
      inputs: `Tensor` of size `[batch, channels, height, width]`.
      specs: specifications for one inverted bottleneck block group.
      name: `str`name for the block.

    Returns:
      The output `Tensor` of the block layer.
    """
    if specs.block_fn == 'mbconv':
      block_fn = nn_blocks.InvertedBottleneckBlock
    else:
      raise ValueError('Block func {} not supported.'.format(specs.block_fn))

    x = block_fn(
        in_filters=specs.in_filters,
        out_filters=specs.out_filters,
        expand_ratio=specs.expand_ratio,
        strides=specs.strides,
        kernel_size=specs.kernel_size,
        se_ratio=self._se_ratio,
        stochastic_depth_drop_rate=self._stochastic_depth_drop_rate,
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activation=self._activation,
        use_sync_bn=self._use_sync_bn,
        norm_momentum=self._norm_momentum,
        norm_epsilon=self._norm_epsilon)(
            inputs)

    for _ in range(1, specs.block_repeats):
      x = block_fn(
          in_filters=specs.out_filters,  # Set 'in_filters' to 'out_filters'.
          out_filters=specs.out_filters,
          expand_ratio=specs.expand_ratio,
          strides=1,  # Fix strides to 1.
          kernel_size=specs.kernel_size,
          se_ratio=self._se_ratio,
          stochastic_depth_drop_rate=self._stochastic_depth_drop_rate,
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer,
          activation=self._activation,
          use_sync_bn=self._use_sync_bn,
          norm_momentum=self._norm_momentum,
          norm_epsilon=self._norm_epsilon)(
              x)

    return tf.identity(x, name=name)

  def get_config(self):
    config_dict = {
        'model_id': self._model_id,
        'se_ratio': self._se_ratio,
        'stochastic_depth_drop_rate': self._stochastic_depth_drop_rate,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'bias_regularizer': self._bias_regularizer,
        'activation': self._activation,
        'use_sync_bn': self._use_sync_bn,
        'norm_momentum': self._norm_momentum,
        'norm_epsilon': self._norm_epsilon
    }
    return config_dict

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)

  @property
  def output_specs(self):
    """A dict of {level: TensorShape} pairs for the model output."""
    return self._output_specs
Yeqing Li's avatar
Yeqing Li committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301


@factory.register_backbone_builder('efficientnet')
def build_efficientnet(
    input_specs: tf.keras.layers.InputSpec,
    model_config,
    l2_regularizer: tf.keras.regularizers.Regularizer = None) -> tf.keras.Model:
  """Builds ResNet 3d backbone from a config."""
  backbone_type = model_config.backbone.type
  backbone_cfg = model_config.backbone.get()
  norm_activation_config = model_config.norm_activation
  assert backbone_type == 'efficientnet', (f'Inconsistent backbone type '
                                           f'{backbone_type}')

  return EfficientNet(
      model_id=backbone_cfg.model_id,
      input_specs=input_specs,
      stochastic_depth_drop_rate=backbone_cfg.stochastic_depth_drop_rate,
      se_ratio=backbone_cfg.se_ratio,
      activation=norm_activation_config.activation,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon,
      kernel_regularizer=l2_regularizer)