retinanet.py 10.3 KB
Newer Older
Abdullah Rashwan's avatar
Abdullah Rashwan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""RetinaNet configuration definition."""

import os
from typing import List, Optional
import dataclasses

from official.core import exp_factory
from official.modeling import hyperparams
from official.modeling import optimization
from official.modeling.hyperparams import config_definitions as cfg
from official.vision.beta.configs import backbones
from official.vision.beta.configs import common
from official.vision.beta.configs import decoders


# pylint: disable=missing-class-docstring
@dataclasses.dataclass
class TfExampleDecoder(hyperparams.Config):
  regenerate_source_id: bool = False


@dataclasses.dataclass
class TfExampleDecoderLabelMap(hyperparams.Config):
  regenerate_source_id: bool = False
  label_map: str = ''


@dataclasses.dataclass
class DataDecoder(hyperparams.OneOfConfig):
  type: Optional[str] = 'simple_decoder'
  simple_decoder: TfExampleDecoder = TfExampleDecoder()
  label_map_decoder: TfExampleDecoderLabelMap = TfExampleDecoderLabelMap()


@dataclasses.dataclass
class Parser(hyperparams.Config):
  num_channels: int = 3
  match_threshold: float = 0.5
  unmatched_threshold: float = 0.5
  aug_rand_hflip: bool = False
  aug_scale_min: float = 1.0
  aug_scale_max: float = 1.0
  skip_crowd_during_training: bool = True
  max_num_instances: int = 100


@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
  """Input config for training."""
  input_path: str = ''
  global_batch_size: int = 0
  is_training: bool = False
  dtype: str = 'bfloat16'
  decoder: DataDecoder = DataDecoder()
  parser: Parser = Parser()
  shuffle_buffer_size: int = 10000


@dataclasses.dataclass
class Anchor(hyperparams.Config):
  num_scales: int = 3
  aspect_ratios: List[float] = dataclasses.field(
      default_factory=lambda: [0.5, 1.0, 2.0])
  anchor_size: float = 4.0


@dataclasses.dataclass
class Losses(hyperparams.Config):
  focal_loss_alpha: float = 0.25
  focal_loss_gamma: float = 1.5
  huber_loss_delta: float = 0.1
  box_loss_weight: int = 50
  l2_weight_decay: float = 0.0


@dataclasses.dataclass
class RetinaNetHead(hyperparams.Config):
  num_convs: int = 4
  num_filters: int = 256
  use_separable_conv: bool = False


@dataclasses.dataclass
class DetectionGenerator(hyperparams.Config):
  pre_nms_top_k: int = 5000
  pre_nms_score_threshold: float = 0.05
  nms_iou_threshold: float = 0.5
  max_num_detections: int = 100
  use_batched_nms: bool = False


@dataclasses.dataclass
class RetinaNet(hyperparams.Config):
  num_classes: int = 0
  input_size: List[int] = dataclasses.field(default_factory=list)
  min_level: int = 3
  max_level: int = 7
  anchor: Anchor = Anchor()
  backbone: backbones.Backbone = backbones.Backbone(
      type='resnet', resnet=backbones.ResNet())
  decoder: decoders.Decoder = decoders.Decoder(
      type='fpn', fpn=decoders.FPN())
  head: RetinaNetHead = RetinaNetHead()
  detection_generator: DetectionGenerator = DetectionGenerator()
  norm_activation: common.NormActivation = common.NormActivation()


@dataclasses.dataclass
class RetinaNetTask(cfg.TaskConfig):
  model: RetinaNet = RetinaNet()
  train_data: DataConfig = DataConfig(is_training=True)
  validation_data: DataConfig = DataConfig(is_training=False)
  losses: Losses = Losses()
  init_checkpoint: Optional[str] = None
  init_checkpoint_modules: str = 'all'  # all or backbone
Zhenyu Tan's avatar
Zhenyu Tan committed
131
  annotation_file: Optional[str] = None
Abdullah Rashwan's avatar
Abdullah Rashwan committed
132
  gradient_clip_norm: float = 0.0
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
133
  per_category_metrics = False
Abdullah Rashwan's avatar
Abdullah Rashwan committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163


@exp_factory.register_config_factory('retinanet')
def retinanet() -> cfg.ExperimentConfig:
  """RetinaNet general config."""
  return cfg.ExperimentConfig(
      task=RetinaNetTask(),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])


COCO_INPUT_PATH_BASE = 'coco'
COCO_TRIAN_EXAMPLES = 118287
COCO_VAL_EXAMPLES = 5000


@exp_factory.register_config_factory('retinanet_resnetfpn_coco')
def retinanet_resnetfpn_coco() -> cfg.ExperimentConfig:
  """COCO object detection with RetinaNet."""
  train_batch_size = 256
  eval_batch_size = 8
  steps_per_epoch = COCO_TRIAN_EXAMPLES // train_batch_size

  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
      task=RetinaNetTask(
          init_checkpoint='gs://cloud-tpu-checkpoints/vision-2.0/resnet50_imagenet/ckpt-28080',
          init_checkpoint_modules='backbone',
Zhenyu Tan's avatar
Zhenyu Tan committed
164
165
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
          model=RetinaNet(
              num_classes=91,
              input_size=[640, 640, 3],
              min_level=3,
              max_level=7),
          losses=Losses(l2_weight_decay=1e-4),
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size,
              parser=Parser(
                  aug_rand_hflip=True, aug_scale_min=0.5, aug_scale_max=2.0)),
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          train_steps=72 * steps_per_epoch,
          validation_steps=COCO_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [
                          57 * steps_per_epoch, 67 * steps_per_epoch
                      ],
                      'values': [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
203
204
205
                          0.32 * train_batch_size / 256.0,
                          0.032 * train_batch_size / 256.0,
                          0.0032 * train_batch_size / 256.0
Abdullah Rashwan's avatar
Abdullah Rashwan committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
                      ],
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 500,
                      'warmup_learning_rate': 0.0067
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config


@exp_factory.register_config_factory('retinanet_spinenet_coco')
def retinanet_spinenet_coco() -> cfg.ExperimentConfig:
  """COCO object detection with RetinaNet using SpineNet backbone."""
  train_batch_size = 256
  eval_batch_size = 8
  steps_per_epoch = COCO_TRIAN_EXAMPLES // train_batch_size
  input_size = 640

  config = cfg.ExperimentConfig(
      runtime=cfg.RuntimeConfig(mixed_precision_dtype='float32'),
      task=RetinaNetTask(
Zhenyu Tan's avatar
Zhenyu Tan committed
236
237
          annotation_file=os.path.join(COCO_INPUT_PATH_BASE,
                                       'instances_val2017.json'),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
238
239
240
          model=RetinaNet(
              backbone=backbones.Backbone(
                  type='spinenet',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
241
242
                  spinenet=backbones.SpineNet(
                      model_id='49', stochastic_depth_drop_rate=0.2)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
243
244
245
              decoder=decoders.Decoder(
                  type='identity', identity=decoders.Identity()),
              anchor=Anchor(anchor_size=3),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
246
247
              norm_activation=common.NormActivation(
                  use_sync_bn=True, activation='swish'),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
248
249
250
251
252
253
254
255
256
257
              num_classes=91,
              input_size=[input_size, input_size, 3],
              min_level=3,
              max_level=7),
          losses=Losses(l2_weight_decay=4e-5),
          train_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size,
              parser=Parser(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
258
                  aug_rand_hflip=True, aug_scale_min=0.1, aug_scale_max=2.0)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
259
260
261
262
263
          validation_data=DataConfig(
              input_path=os.path.join(COCO_INPUT_PATH_BASE, 'val*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
264
          train_steps=500 * steps_per_epoch,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
          validation_steps=COCO_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
281
                          475 * steps_per_epoch, 490 * steps_per_epoch
Abdullah Rashwan's avatar
Abdullah Rashwan committed
282
283
                      ],
                      'values': [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
284
285
286
                          0.32 * train_batch_size / 256.0,
                          0.032 * train_batch_size / 256.0,
                          0.0032 * train_batch_size / 256.0
Abdullah Rashwan's avatar
Abdullah Rashwan committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
                      ],
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 2000,
                      'warmup_learning_rate': 0.0067
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config