question_answering.py 13.5 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Question answering task."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
17
18
19
import collections
import json
import os
20

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
21
from absl import logging
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
22
import dataclasses
23
import orbit
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
24
25
26
27
import tensorflow as tf
import tensorflow_hub as hub

from official.core import base_task
Abdullah Rashwan's avatar
Abdullah Rashwan committed
28
from official.core import task_factory
Hongkun Yu's avatar
Hongkun Yu committed
29
from official.modeling.hyperparams import base_config
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
30
from official.modeling.hyperparams import config_definitions as cfg
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
31
32
33
from official.nlp.bert import squad_evaluate_v1_1
from official.nlp.bert import squad_evaluate_v2_0
from official.nlp.bert import tokenization
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
34
from official.nlp.configs import encoders
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
35
from official.nlp.data import data_loader_factory
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
36
37
from official.nlp.data import squad_lib as squad_lib_wp
from official.nlp.data import squad_lib_sp
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
38
from official.nlp.modeling import models
Chen Chen's avatar
Chen Chen committed
39
from official.nlp.tasks import utils
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
40
41


Hongkun Yu's avatar
Hongkun Yu committed
42
43
44
@dataclasses.dataclass
class ModelConfig(base_config.Config):
  """A base span labeler configuration."""
Hongkun Yu's avatar
Hongkun Yu committed
45
  encoder: encoders.EncoderConfig = encoders.EncoderConfig()
Hongkun Yu's avatar
Hongkun Yu committed
46
47


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
48
49
50
51
52
53
@dataclasses.dataclass
class QuestionAnsweringConfig(cfg.TaskConfig):
  """The model config."""
  # At most one of `init_checkpoint` and `hub_module_url` can be specified.
  init_checkpoint: str = ''
  hub_module_url: str = ''
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
54
55
56
  n_best_size: int = 20
  max_answer_length: int = 30
  null_score_diff_threshold: float = 0.0
Hongkun Yu's avatar
Hongkun Yu committed
57
  model: ModelConfig = ModelConfig()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
58
59
60
61
  train_data: cfg.DataConfig = cfg.DataConfig()
  validation_data: cfg.DataConfig = cfg.DataConfig()


Abdullah Rashwan's avatar
Abdullah Rashwan committed
62
@task_factory.register_task_cls(QuestionAnsweringConfig)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
63
class QuestionAnsweringTask(base_task.Task):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
64
  """Task object for question answering."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
65

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
66
67
  def __init__(self, params=cfg.TaskConfig, logging_dir=None):
    super(QuestionAnsweringTask, self).__init__(params, logging_dir)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
68
69
70
71
72
73
74
75
    if params.hub_module_url and params.init_checkpoint:
      raise ValueError('At most one of `hub_module_url` and '
                       '`init_checkpoint` can be specified.')
    if params.hub_module_url:
      self._hub_module = hub.load(params.hub_module_url)
    else:
      self._hub_module = None

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
76
77
78
79
80
81
82
83
    if params.validation_data.tokenization == 'WordPiece':
      self.squad_lib = squad_lib_wp
    elif params.validation_data.tokenization == 'SentencePiece':
      self.squad_lib = squad_lib_sp
    else:
      raise ValueError('Unsupported tokenization method: {}'.format(
          params.validation_data.tokenization))

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
84
85
86
87
    if params.validation_data.input_path:
      self._tf_record_input_path, self._eval_examples, self._eval_features = (
          self._preprocess_eval_data(params.validation_data))

88
89
90
91
  def set_preprocessed_eval_input_path(self, eval_input_path):
    """Sets the path to the preprocessed eval data."""
    self._tf_record_input_path = eval_input_path

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
92
93
  def build_model(self):
    if self._hub_module:
Chen Chen's avatar
Chen Chen committed
94
      encoder_network = utils.get_encoder_from_hub(self._hub_module)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
95
    else:
Hongkun Yu's avatar
Hongkun Yu committed
96
97
      encoder_network = encoders.build_encoder(self.task_config.model.encoder)
    encoder_cfg = self.task_config.model.encoder.get()
Hongkun Yu's avatar
Hongkun Yu committed
98
    # Currently, we only supports bert-style question answering finetuning.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
99
100
101
    return models.BertSpanLabeler(
        network=encoder_network,
        initializer=tf.keras.initializers.TruncatedNormal(
Hongkun Yu's avatar
Hongkun Yu committed
102
            stddev=encoder_cfg.initializer_range))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
103
104
105
106
107
108
109
110
111
112
113

  def build_losses(self, labels, model_outputs, aux_losses=None) -> tf.Tensor:
    start_positions = labels['start_positions']
    end_positions = labels['end_positions']
    start_logits, end_logits = model_outputs

    start_loss = tf.keras.losses.sparse_categorical_crossentropy(
        start_positions,
        tf.cast(start_logits, dtype=tf.float32),
        from_logits=True)
    end_loss = tf.keras.losses.sparse_categorical_crossentropy(
Hongkun Yu's avatar
Hongkun Yu committed
114
        end_positions, tf.cast(end_logits, dtype=tf.float32), from_logits=True)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
115
116
117
118

    loss = (tf.reduce_mean(start_loss) + tf.reduce_mean(end_loss)) / 2
    return loss

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
119
120
121
122
123
124
  def _preprocess_eval_data(self, params):
    eval_examples = self.squad_lib.read_squad_examples(
        input_file=params.input_path,
        is_training=False,
        version_2_with_negative=params.version_2_with_negative)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
125
126
127
128
129
    temp_file_path = params.input_preprocessed_data_path or self.logging_dir
    if not temp_file_path:
      raise ValueError('You must specify a temporary directory, either in '
                       'params.input_preprocessed_data_path or logging_dir to '
                       'store intermediate evaluation TFRecord data.')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    eval_writer = self.squad_lib.FeatureWriter(
        filename=os.path.join(temp_file_path, 'eval.tf_record'),
        is_training=False)
    eval_features = []

    def _append_feature(feature, is_padding):
      if not is_padding:
        eval_features.append(feature)
      eval_writer.process_feature(feature)

    kwargs = dict(
        examples=eval_examples,
        max_seq_length=params.seq_length,
        doc_stride=params.doc_stride,
        max_query_length=params.query_length,
        is_training=False,
        output_fn=_append_feature,
        batch_size=params.global_batch_size)
Chen Chen's avatar
Chen Chen committed
148

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
149
150
151
    if params.tokenization == 'SentencePiece':
      # squad_lib_sp requires one more argument 'do_lower_case'.
      kwargs['do_lower_case'] = params.do_lower_case
Chen Chen's avatar
Chen Chen committed
152
153
154
155
156
157
158
      kwargs['tokenizer'] = tokenization.FullSentencePieceTokenizer(
          sp_model_file=params.vocab_file)
    elif params.tokenization == 'WordPiece':
      kwargs['tokenizer'] = tokenization.FullTokenizer(
          vocab_file=params.vocab_file, do_lower_case=params.do_lower_case)
    else:
      raise ValueError('Unexpected tokenization: %s' % params.tokenization)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
159
160
161
162
163
164
165
166
167
168
169
170

    eval_dataset_size = self.squad_lib.convert_examples_to_features(**kwargs)
    eval_writer.close()

    logging.info('***** Evaluation input stats *****')
    logging.info('  Num orig examples = %d', len(eval_examples))
    logging.info('  Num split examples = %d', len(eval_features))
    logging.info('  Batch size = %d', params.global_batch_size)
    logging.info('  Dataset size = %d', eval_dataset_size)

    return eval_writer.filename, eval_examples, eval_features

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
171
172
173
  def build_inputs(self, params, input_context=None):
    """Returns tf.data.Dataset for sentence_prediction task."""
    if params.input_path == 'dummy':
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
174
      # Dummy training data for unit test.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
      def dummy_data(_):
        dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32)
        x = dict(
            input_word_ids=dummy_ids,
            input_mask=dummy_ids,
            input_type_ids=dummy_ids)
        y = dict(
            start_positions=tf.constant(0, dtype=tf.int32),
            end_positions=tf.constant(1, dtype=tf.int32))
        return (x, y)

      dataset = tf.data.Dataset.range(1)
      dataset = dataset.repeat()
      dataset = dataset.map(
          dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
      return dataset

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
192
    if params.is_training:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
193
      dataloader_params = params
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
194
    else:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
195
      input_path = self._tf_record_input_path
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
196
      dataloader_params = params.replace(input_path=input_path)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
197

Hongkun Yu's avatar
Hongkun Yu committed
198
199
    return data_loader_factory.get_data_loader(dataloader_params).load(
        input_context)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

  def build_metrics(self, training=None):
    del training
    # TODO(lehou): a list of metrics doesn't work the same as in compile/fit.
    metrics = [
        tf.keras.metrics.SparseCategoricalAccuracy(
            name='start_position_accuracy'),
        tf.keras.metrics.SparseCategoricalAccuracy(
            name='end_position_accuracy'),
    ]
    return metrics

  def process_metrics(self, metrics, labels, model_outputs):
    metrics = dict([(metric.name, metric) for metric in metrics])
    start_logits, end_logits = model_outputs
Hongkun Yu's avatar
Hongkun Yu committed
215
216
217
218
    metrics['start_position_accuracy'].update_state(labels['start_positions'],
                                                    start_logits)
    metrics['end_position_accuracy'].update_state(labels['end_positions'],
                                                  end_logits)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
219
220
221
222
223

  def process_compiled_metrics(self, compiled_metrics, labels, model_outputs):
    start_logits, end_logits = model_outputs
    compiled_metrics.update_state(
        y_true=labels,  # labels has keys 'start_positions' and 'end_positions'.
Hongkun Yu's avatar
Hongkun Yu committed
224
225
226
227
        y_pred={
            'start_positions': start_logits,
            'end_positions': end_logits
        })
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
228

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
  def validation_step(self, inputs, model: tf.keras.Model, metrics=None):
    features, _ = inputs
    unique_ids = features.pop('unique_ids')
    model_outputs = self.inference_step(features, model)
    start_logits, end_logits = model_outputs
    logs = {
        self.loss: 0.0,  # TODO(lehou): compute the real validation loss.
        'unique_ids': unique_ids,
        'start_logits': start_logits,
        'end_logits': end_logits,
    }
    return logs

  raw_aggregated_result = collections.namedtuple(
      'RawResult', ['unique_id', 'start_logits', 'end_logits'])

  def aggregate_logs(self, state=None, step_outputs=None):
    assert step_outputs is not None, 'Got no logs from self.validation_step.'
    if state is None:
      state = []

    for unique_ids, start_logits, end_logits in zip(
Hongkun Yu's avatar
Hongkun Yu committed
251
        step_outputs['unique_ids'], step_outputs['start_logits'],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
252
        step_outputs['end_logits']):
Hongkun Yu's avatar
Hongkun Yu committed
253
254
      u_ids, s_logits, e_logits = (unique_ids.numpy(), start_logits.numpy(),
                                   end_logits.numpy())
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
255
      for values in zip(u_ids, s_logits, e_logits):
Hongkun Yu's avatar
Hongkun Yu committed
256
257
258
259
260
        state.append(
            self.raw_aggregated_result(
                unique_id=values[0],
                start_logits=values[1].tolist(),
                end_logits=values[2].tolist()))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
    return state

  def reduce_aggregated_logs(self, aggregated_logs):
    all_predictions, _, scores_diff = (
        self.squad_lib.postprocess_output(
            self._eval_examples,
            self._eval_features,
            aggregated_logs,
            self.task_config.n_best_size,
            self.task_config.max_answer_length,
            self.task_config.validation_data.do_lower_case,
            version_2_with_negative=(
                self.task_config.validation_data.version_2_with_negative),
            null_score_diff_threshold=(
                self.task_config.null_score_diff_threshold),
            verbose=False))

Hongkun Yu's avatar
Hongkun Yu committed
278
279
    with tf.io.gfile.GFile(self.task_config.validation_data.input_path,
                           'r') as reader:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
280
281
282
      dataset_json = json.load(reader)
      pred_dataset = dataset_json['data']
    if self.task_config.validation_data.version_2_with_negative:
Hongkun Yu's avatar
Hongkun Yu committed
283
284
      eval_metrics = squad_evaluate_v2_0.evaluate(pred_dataset, all_predictions,
                                                  scores_diff)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
285
286
287
288
289
290
291
292
      # Filter out useless metrics, such as start_position_accuracy that
      # we did not actually compute.
      eval_metrics = {
          'exact_match': eval_metrics['final_exact'],
          'exact_match_threshold': eval_metrics['final_exact_thresh'],
          'final_f1': eval_metrics['final_f1'] / 100.0,  # scale back to [0, 1].
          'f1_threshold': eval_metrics['final_f1_thresh'],
          'has_answer_exact_match': eval_metrics['HasAns_exact'],
Hongkun Yu's avatar
Hongkun Yu committed
293
294
          'has_answer_f1': eval_metrics['HasAns_f1']
      }
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
295
296
    else:
      eval_metrics = squad_evaluate_v1_1.evaluate(pred_dataset, all_predictions)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
297
298
      # Filter out useless metrics, such as start_position_accuracy that
      # we did not actually compute.
Hongkun Yu's avatar
Hongkun Yu committed
299
300
301
302
      eval_metrics = {
          'exact_match': eval_metrics['exact_match'],
          'final_f1': eval_metrics['final_f1']
      }
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
303
    return eval_metrics
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346


def predict(task: QuestionAnsweringTask, params: cfg.DataConfig,
            model: tf.keras.Model):
  """Predicts on the input data.

  Args:
    task: A `QuestionAnsweringTask` object.
    params: A `cfg.DataConfig` object.
    model: A keras.Model.

  Returns:
    A tuple of `all_predictions`, `all_nbest` and `scores_diff`, which
      are dict and can be written to json files including prediction json file,
      nbest json file and null_odds json file.
  """
  tf_record_input_path, eval_examples, eval_features = (
      task._preprocess_eval_data(params))  # pylint: disable=protected-access

  # `tf_record_input_path` will overwrite `params.input_path`,
  # when `task.buid_inputs()` is called.
  task.set_preprocessed_eval_input_path(tf_record_input_path)

  def predict_step(inputs):
    """Replicated prediction calculation."""
    return task.validation_step(inputs, model)

  dataset = orbit.utils.make_distributed_dataset(tf.distribute.get_strategy(),
                                                 task.build_inputs, params)
  aggregated_outputs = utils.predict(predict_step, task.aggregate_logs, dataset)

  all_predictions, all_nbest, scores_diff = (
      task.squad_lib.postprocess_output(
          eval_examples,
          eval_features,
          aggregated_outputs,
          task.task_config.n_best_size,
          task.task_config.max_answer_length,
          task.task_config.validation_data.do_lower_case,
          version_2_with_negative=(params.version_2_with_negative),
          null_score_diff_threshold=task.task_config.null_score_diff_threshold,
          verbose=False))
  return all_predictions, all_nbest, scores_diff