prado.py 8.01 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Copyright 2020 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# Lint as: python3
"""Implementation of PRADO model."""

import copy
from absl import logging
import numpy as np
import tensorflow as tf

from layers import base_layers # import seq_flow_lite module
from layers import conv_layers # import seq_flow_lite module
from layers import dense_layers # import seq_flow_lite module
from layers import projection_layers # import seq_flow_lite module
from layers import quantization_layers # import seq_flow_lite module
from tf_ops import tf_custom_ops_py # import seq_flow_lite module


class PaddedMaskedVarLenConv(conv_layers.EncoderQConvolutionVarLen):
  """A layer that performs padded masked convolution."""

  def __init__(self, invalid_value, ngram=2, skip_bigram=None, **kwargs):
    self.invalid_value = invalid_value
    assert ngram is None or (ngram >= 1 and ngram <= 5)
    assert skip_bigram is None or skip_bigram == 1 or skip_bigram == 2
    assert bool(ngram is None) != bool(skip_bigram is None)
    self.kwidth = ngram if ngram is not None else (skip_bigram + 2)
    mask = [1] * self.kwidth
pyoung2778's avatar
pyoung2778 committed
41
    self.skipgram = skip_bigram is not None
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    if skip_bigram is not None:
      mask[1], mask[skip_bigram] = 0, 0
    self.mask = np.array(mask, dtype="float32").reshape((1, self.kwidth, 1, 1))
    self.zero_pad = tf.keras.layers.ZeroPadding1D(padding=[0, self.kwidth - 1])
    super(PaddedMaskedVarLenConv, self).__init__(
        ksize=self.kwidth, rank=3, padding="VALID", activation=None, **kwargs)

  def call(self, inputs, mask, inverse_normalizer):
    self._assert_rank_and_type(inputs, 3)
    self._assert_rank_and_type(mask, 3)
    maskr4 = tf.expand_dims(mask, axis=1)
    inputs_padded = self.zero_pad(inputs)
    result = super(PaddedMaskedVarLenConv, self).call(inputs_padded, maskr4,
                                                      inverse_normalizer)
    if self.parameters.mode not in [base_layers.PREDICT, base_layers.TFLITE]:
      return result * mask + (1 - mask) * self.invalid_value
    return result

pyoung2778's avatar
pyoung2778 committed
60
61
62
63
  def quantize_parameter(self, weight, num_bits=8):
    weight = super(PaddedMaskedVarLenConv, self).quantize_parameter(
        weight, num_bits=num_bits)
    return weight * tf.convert_to_tensor(self.mask) if self.skipgram else weight
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100


class AttentionPoolReduce(base_layers.BaseLayer):
  """Attention pooling and reduce."""

  def __init__(self, filters, ngram=2, skip_bigram=None, **kwargs):
    super(AttentionPoolReduce, self).__init__(**kwargs)
    self.filters = filters
    self.value = PaddedMaskedVarLenConv(
        0, filters=filters, ngram=ngram, skip_bigram=skip_bigram, **kwargs)
    self.attention_logits = PaddedMaskedVarLenConv(
        self.parameters.invalid_logit,
        filters=filters,
        ngram=ngram,
        skip_bigram=skip_bigram,
        **kwargs)

  def call(self, values_in, attention_in, mask, inverse_normalizer):
    self._assert_rank_and_type(values_in, 3)
    self._assert_rank_and_type(attention_in, 3)
    self._assert_rank_and_type(mask, 3)
    values = self.value(values_in, mask, inverse_normalizer)
    attention_logits = self.attention_logits(attention_in, mask,
                                             inverse_normalizer)

    if self.parameters.mode == base_layers.TFLITE:
      return tf_custom_ops_py.expected_value_op(attention_logits, values)
    else:
      attention_logits = tf.transpose(attention_logits, [0, 2, 1])
      values = tf.transpose(values, [0, 2, 1])
      attention = tf.nn.softmax(attention_logits)
      return tf.reduce_sum(attention * values, axis=2)


class Encoder(tf.keras.layers.Layer):
  """A PRADO keras model."""

pyoung2778's avatar
pyoung2778 committed
101
102
  def __init__(self, config, mode, **kwargs):
    super(Encoder, self).__init__(**kwargs)
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

    def _get_params(varname, default_value=None):
      value = config[varname] if varname in config else default_value
      default = "" if varname in config else " (default)"
      logging.info("%s = %s%s", varname, value, default)
      setattr(self, varname, value)

    _get_params("labels")
    _get_params("quantize", True)
    _get_params("embedding_regularizer_scale", 35e-3)
    _get_params("embedding_size", 64)
    _get_params("unigram_channels", 0)
    _get_params("bigram_channels", 0)
    _get_params("trigram_channels", 0)
    _get_params("fourgram_channels", 0)
    _get_params("fivegram_channels", 0)
    _get_params("skip1bigram_channels", 0)
    _get_params("skip2bigram_channels", 0)
    _get_params("network_regularizer_scale", 1e-4)
pyoung2778's avatar
pyoung2778 committed
122
    _get_params("keep_prob", 1.0)
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    self.num_classes = len(self.labels)

    self.parameters = base_layers.Parameters(
        mode,
        quantize=self.quantize,
        regularizer_scale=self.embedding_regularizer_scale)
    self.values_fc = dense_layers.BaseQDenseVarLen(
        units=self.embedding_size, rank=3, parameters=self.parameters)
    self.attention_fc = dense_layers.BaseQDenseVarLen(
        units=self.embedding_size, rank=3, parameters=self.parameters)

    self.parameters = copy.copy(self.parameters)
    self.parameters.regularizer_scale = self.network_regularizer_scale
    self.attention_pool_layers = []
    self._add_attention_pool_layer(self.unigram_channels, 1)
    self._add_attention_pool_layer(self.bigram_channels, 2)
    self._add_attention_pool_layer(self.trigram_channels, 3)
    self._add_attention_pool_layer(self.fourgram_channels, 4)
    self._add_attention_pool_layer(self.fivegram_channels, 5)
    self._add_attention_pool_layer(self.skip1bigram_channels, None, 1)
    self._add_attention_pool_layer(self.skip2bigram_channels, None, 2)

    self.concat_quantizer = quantization_layers.ConcatQuantization(
        axis=1, parameters=self.parameters)
    self.final_fc = dense_layers.BaseQDense(
        units=self.num_classes,
        rank=2,
        parameters=self.parameters,
        activation=None)

  def _add_attention_pool_layer(self, channels, ngram, skip_bigram=None):
    if channels > 0:
      self.attention_pool_layers.append(
          AttentionPoolReduce(
              filters=channels,
              skip_bigram=skip_bigram,
              ngram=ngram,
              parameters=self.parameters))

  def _apply_fc_dropout(self, layer, inputs, mask, inverse_normalizer):
    outputs = layer(inputs, mask, inverse_normalizer)
pyoung2778's avatar
pyoung2778 committed
164
165
    if self.parameters.mode == base_layers.TRAIN and self.keep_prob < 1.0:
      return tf.nn.dropout(outputs, rate=(1 - self.keep_prob))
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    return outputs

  def call(self, projection, seq_length):
    mask = tf.sequence_mask(
        seq_length, tf.shape(projection)[1], dtype=tf.float32)
    inverse_normalizer = tf.math.reciprocal(tf.reduce_sum(mask))
    maskr3 = tf.expand_dims(mask, axis=2)
    values_in = self._apply_fc_dropout(self.values_fc, projection, mask,
                                       inverse_normalizer)
    attention_in = self._apply_fc_dropout(self.attention_fc, projection, mask,
                                          inverse_normalizer)
    tensors = [
        layer(values_in, attention_in, maskr3, inverse_normalizer)
        for layer in self.attention_pool_layers
    ]
pyoung2778's avatar
pyoung2778 committed
181
182
183

    assert tensors, "no ngram channels have been configured"

184
185
186
187
188
189
    pre_logits = self.concat_quantizer(tensors)
    return self.final_fc(pre_logits)


class Model(Encoder):

pyoung2778's avatar
pyoung2778 committed
190
191
  def __init__(self, config, mode, **kwargs):
    super(Model, self).__init__(config, mode, **kwargs)
192
193
194
195
196
    self.projection = projection_layers.ProjectionLayer(config, mode)

  def call(self, inputs):
    projection, seq_length = self.projection(inputs)
    return super(Model, self).call(projection, seq_length)