common.py 3.29 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14
15

# Lint as: python3
Abdullah Rashwan's avatar
Abdullah Rashwan committed
16
17
"""Common configurations."""

18
import dataclasses
19
from typing import Optional
Fan Yang's avatar
Fan Yang committed
20

21
# Import libraries
Abdullah Rashwan's avatar
Abdullah Rashwan committed
22

Fan Yang's avatar
Fan Yang committed
23
from official.core import config_definitions as cfg
Abdullah Rashwan's avatar
Abdullah Rashwan committed
24
25
26
from official.modeling import hyperparams


27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
@dataclasses.dataclass
class TfExampleDecoder(hyperparams.Config):
  """A simple TF Example decoder config."""
  regenerate_source_id: bool = False
  mask_binarize_threshold: Optional[float] = None


@dataclasses.dataclass
class TfExampleDecoderLabelMap(hyperparams.Config):
  """TF Example decoder with label map config."""
  regenerate_source_id: bool = False
  mask_binarize_threshold: Optional[float] = None
  label_map: str = ''


@dataclasses.dataclass
class DataDecoder(hyperparams.OneOfConfig):
  """Data decoder config.

  Attributes:
    type: 'str', type of data decoder be used, one of the fields below.
    simple_decoder: simple TF Example decoder config.
    label_map_decoder: TF Example decoder with label map config.
  """
  type: Optional[str] = 'simple_decoder'
  simple_decoder: TfExampleDecoder = TfExampleDecoder()
  label_map_decoder: TfExampleDecoderLabelMap = TfExampleDecoderLabelMap()


56
57
58
59
60
61
62
@dataclasses.dataclass
class RandAugment(hyperparams.Config):
  """Configuration for RandAugment."""
  num_layers: int = 2
  magnitude: float = 10
  cutout_const: float = 40
  translate_const: float = 10
Fan Yang's avatar
Fan Yang committed
63
  prob_to_apply: Optional[float] = None
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87


@dataclasses.dataclass
class AutoAugment(hyperparams.Config):
  """Configuration for AutoAugment."""
  augmentation_name: str = 'v0'
  cutout_const: float = 100
  translate_const: float = 250


@dataclasses.dataclass
class Augmentation(hyperparams.OneOfConfig):
  """Configuration for input data augmentation.

  Attributes:
    type: 'str', type of augmentation be used, one of the fields below.
    randaug: RandAugment config.
    autoaug: AutoAugment config.
  """
  type: Optional[str] = None
  randaug: RandAugment = RandAugment()
  autoaug: AutoAugment = AutoAugment()


Abdullah Rashwan's avatar
Abdullah Rashwan committed
88
89
90
@dataclasses.dataclass
class NormActivation(hyperparams.Config):
  activation: str = 'relu'
Pengchong Jin's avatar
Pengchong Jin committed
91
  use_sync_bn: bool = True
Abdullah Rashwan's avatar
Abdullah Rashwan committed
92
93
  norm_momentum: float = 0.99
  norm_epsilon: float = 0.001
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
94
95
96


@dataclasses.dataclass
Fan Yang's avatar
Fan Yang committed
97
class PseudoLabelDataConfig(cfg.DataConfig):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
98
99
  """Psuedo Label input config for training."""
  input_path: str = ''
100
  data_ratio: float = 1.0  # Per-batch ratio of pseudo-labeled to labeled data.
Fan Yang's avatar
Fan Yang committed
101
102
103
104
  is_training: bool = True
  dtype: str = 'float32'
  shuffle_buffer_size: int = 10000
  cycle_length: int = 10
105
106
107
  aug_rand_hflip: bool = True
  aug_type: Optional[
      Augmentation] = None  # Choose from AutoAugment and RandAugment.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
108
  file_type: str = 'tfrecord'
Fan Yang's avatar
Fan Yang committed
109
110
111
112

  # Keep for backward compatibility.
  aug_policy: Optional[str] = None  # None, 'autoaug', or 'randaug'.
  randaug_magnitude: Optional[int] = 10