README.md 4.94 KB
Newer Older
1
2
This folder contains the Keras implementation of the ResNet models. For more
information about the models, please refer to this [README file](../../README.md).
3

4
Similar to the [estimator implementation](../../r1/resnet), the Keras
5
implementation has code for both CIFAR-10 data and ImageNet data. The CIFAR-10
6
7
version uses a ResNet56 model implemented in
[`resnet_cifar_model.py`](./resnet_cifar_model.py), and the ImageNet version
8
9
uses a ResNet50 model implemented in [`resnet_model.py`](./resnet_model.py).

10
11
12
To use
either dataset, make sure that you have the latest version of TensorFlow
installed and
13
[add the models folder to your Python path](/official/#running-the-models),
14
otherwise you may encounter an error like `ImportError: No module named
15
16
17
18
19
20
official.resnet`.

## CIFAR-10

Download and extract the CIFAR-10 data. You can use the following script:
```bash
21
python ../../r1/resnet/cifar10_download_and_extract.py
22
23
24
25
26
```

After you download the data, you can run the program by:

```bash
27
python resnet_cifar_main.py
28
29
```

30
If you did not use the default directory to download the data, specify the
31
32
33
location with the `--data_dir` flag, like:

```bash
34
python resnet_cifar_main.py --data_dir=/path/to/cifar
35
36
37
38
```

## ImageNet

39
Download the ImageNet dataset and convert it to TFRecord format.
40
41
42
43
44
45
46
The following [script](https://github.com/tensorflow/tpu/blob/master/tools/datasets/imagenet_to_gcs.py)
and [README](https://github.com/tensorflow/tpu/tree/master/tools/datasets#imagenet_to_gcspy)
provide a few options.

Once your dataset is ready, you can begin training the model as follows:

```bash
47
python resnet_imagenet_main.py
48
49
50
51
52
53
```

Again, if you did not download the data to the default directory, specify the
location with the `--data_dir` flag:

```bash
54
python resnet_imagenet_main.py --data_dir=/path/to/imagenet
55
56
57
58
```

There are more flag options you can specify. Here are some examples:

59
- `--use_synthetic_data`: when set to true, synthetic data, rather than real
60
61
62
63
64
65
data, are used;
- `--batch_size`: the batch size used for the model;
- `--model_dir`: the directory to save the model checkpoint;
- `--train_epochs`: number of epoches to run for training the model;
- `--train_steps`: number of steps to run for training the model. We now only
support a number that is smaller than the number of batches in an epoch.
66
- `--skip_eval`: when set to true, evaluation as well as validation during
67
68
training is skipped

69
For example, this is a typical command line to run with ImageNet data with
70
71
72
batch size 128 per GPU:

```bash
73
74
75
76
77
78
79
python -m resnet_imagenet_main \
    --model_dir=/tmp/model_dir/something \
    --num_gpus=2 \
    --batch_size=128 \
    --train_epochs=90 \
    --train_steps=10 \
    --use_synthetic_data=false
80
81
```

82
See [`common.py`](common.py) for full list of options.
83
84

## Using multiple GPUs
85
86
You can train these models on multiple GPUs using `tf.distribute.Strategy` API.
You can read more about them in this
87
88
[guide](https://www.tensorflow.org/guide/distribute_strategy).

89
90
In this example, we have made it easier to use is with just a command line flag
`--num_gpus`. By default this flag is 1 if TensorFlow is compiled with CUDA,
91
92
93
94
and 0 otherwise.

- --num_gpus=0: Uses tf.distribute.OneDeviceStrategy with CPU as the device.
- --num_gpus=1: Uses tf.distribute.OneDeviceStrategy with GPU as the device.
95
- --num_gpus=2+: Uses tf.distribute.MirroredStrategy to run synchronous
96
97
distributed training across the GPUs.

98
If you wish to run without `tf.distribute.Strategy`, you can do so by setting
99
100
`--distribution_strategy=off`.

Will Cromar's avatar
Will Cromar committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
## Running on Cloud TPUs

Note: This model will **not** work with TPUs on Colab.

You can train the ResNet CTL model on Cloud TPUs using
`tf.distribute.TPUStrategy`. If you are not familiar with Cloud TPUs, it is
strongly recommended that you go through the
[quickstart](https://cloud.google.com/tpu/docs/quickstart) to learn how to
create a TPU and GCE VM.

To run ResNet model on a TPU, you must set `--distribution_strategy=tpu` and
`--tpu=$TPU_NAME`, where `$TPU_NAME` the name of your TPU in the Cloud Console.
From a GCE VM, you can run the following command to train ResNet for one epoch
on a v2-8 or v3-8 TPU:

```bash
python resnet_ctl_imagenet_main.py \
  --tpu=$TPU_NAME \
  --model_dir=$MODEL_DIR \
  --data_dir=$DATA_DIR \
  --batch_size=1024 \
  --steps_per_loop=500 \
  --train_epochs=1 \
  --use_synthetic_data=false \
  --dtype=fp32 \
  --enable_eager=true \
  --enable_tensorboard=false \
  --distribution_strategy=tpu \
  --log_steps=50 \
  --single_l2_loss_op=true \
  --use_tf_function=true
```

To train the ResNet to convergence, run it for 90 epochs:

```bash
python resnet_ctl_imagenet_main.py \
  --tpu=$TPU_NAME \
  --model_dir=$MODEL_DIR \
  --data_dir=$DATA_DIR \
  --batch_size=1024 \
  --steps_per_loop=500 \
  --train_epochs=90 \
  --use_synthetic_data=false \
  --dtype=fp32 \
  --enable_eager=true \
  --enable_tensorboard=false \
  --distribution_strategy=tpu \
  --log_steps=50 \
  --single_l2_loss_op=true \
  --use_tf_function=true
```

Note: `$MODEL_DIR` and `$DATA_DIR` must be GCS paths.