segmentation_losses.py 5.14 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Losses used for segmentation models."""

# Import libraries
import tensorflow as tf

from official.modeling import tf_utils

EPSILON = 1e-5


class SegmentationLoss:
  """Semantic segmentation loss."""

  def __init__(self, label_smoothing, class_weights, ignore_label,
               use_groundtruth_dimension, top_k_percent_pixels=1.0):
    self._top_k_percent_pixels = top_k_percent_pixels
    self._class_weights = class_weights
    self._ignore_label = ignore_label
    self._use_groundtruth_dimension = use_groundtruth_dimension
    self._label_smoothing = label_smoothing

  def __call__(self, logits, labels):
    _, height, width, num_classes = logits.get_shape().as_list()

    if self._use_groundtruth_dimension:
      # TODO(arashwan): Test using align corners to match deeplab alignment.
      logits = tf.image.resize(
          logits, tf.shape(labels)[1:3],
          method=tf.image.ResizeMethod.BILINEAR)
    else:
      labels = tf.image.resize(
          labels, (height, width),
          method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)

    valid_mask = tf.not_equal(labels, self._ignore_label)
    normalizer = tf.reduce_sum(tf.cast(valid_mask, tf.float32)) + EPSILON
    # Assign pixel with ignore label to class 0 (background). The loss on the
    # pixel will later be masked out.
    labels = tf.where(valid_mask, labels, tf.zeros_like(labels))

    labels = tf.squeeze(tf.cast(labels, tf.int32), axis=3)
    valid_mask = tf.squeeze(tf.cast(valid_mask, tf.float32), axis=3)
    onehot_labels = tf.one_hot(labels, num_classes)
    onehot_labels = onehot_labels * (
        1 - self._label_smoothing) + self._label_smoothing / num_classes
    cross_entropy_loss = tf.nn.softmax_cross_entropy_with_logits(
        labels=onehot_labels, logits=logits)

    if not self._class_weights:
      class_weights = [1] * num_classes
    else:
      class_weights = self._class_weights

    if num_classes != len(class_weights):
      raise ValueError(
          'Length of class_weights should be {}'.format(num_classes))

    weight_mask = tf.einsum('...y,y->...',
                            tf.one_hot(labels, num_classes, dtype=tf.float32),
                            tf.constant(class_weights, tf.float32))
    valid_mask *= weight_mask
    cross_entropy_loss *= tf.cast(valid_mask, tf.float32)

    if self._top_k_percent_pixels >= 1.0:
      loss = tf.reduce_sum(cross_entropy_loss) / normalizer
    else:
      cross_entropy_loss = tf.reshape(cross_entropy_loss, shape=[-1])
      top_k_pixels = tf.cast(
          self._top_k_percent_pixels *
          tf.cast(tf.size(cross_entropy_loss), tf.float32), tf.int32)
      top_k_losses, _ = tf.math.top_k(
          cross_entropy_loss, k=top_k_pixels, sorted=True)
      normalizer = tf.reduce_sum(
          tf.cast(tf.not_equal(top_k_losses, 0.0), tf.float32)) + EPSILON
      loss = tf.reduce_sum(top_k_losses) / normalizer

    return loss


def get_actual_mask_scores(logits, labels, ignore_label):
  """Gets actual mask scores."""
  _, height, width, num_classes = logits.get_shape().as_list()
  batch_size = tf.shape(logits)[0]
  logits = tf.stop_gradient(logits)
  labels = tf.image.resize(
      labels, (height, width),
      method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
  predicted_labels = tf.argmax(logits, -1, output_type=tf.int32)
  flat_predictions = tf.reshape(predicted_labels, [batch_size, -1])
  flat_labels = tf.cast(tf.reshape(labels, [batch_size, -1]), tf.int32)

  one_hot_predictions = tf.one_hot(
      flat_predictions, num_classes, on_value=True, off_value=False)
  one_hot_labels = tf.one_hot(
      flat_labels, num_classes, on_value=True, off_value=False)
  keep_mask = tf.not_equal(flat_labels, ignore_label)
  keep_mask = tf.expand_dims(keep_mask, 2)

  overlap = tf.logical_and(one_hot_predictions, one_hot_labels)
  overlap = tf.logical_and(overlap, keep_mask)
  overlap = tf.reduce_sum(tf.cast(overlap, tf.float32), axis=1)
  union = tf.logical_or(one_hot_predictions, one_hot_labels)
  union = tf.logical_and(union, keep_mask)
  union = tf.reduce_sum(tf.cast(union, tf.float32), axis=1)
  actual_scores = tf.divide(overlap, tf.maximum(union, EPSILON))
  return actual_scores


class MaskScoringLoss:
  """Mask Scoring loss."""

  def __init__(self, ignore_label):
    self._ignore_label = ignore_label
    self._mse_loss = tf.keras.losses.MeanSquaredError(
        reduction=tf.keras.losses.Reduction.NONE)

  def __call__(self, predicted_scores, logits, labels):
    actual_scores = get_actual_mask_scores(logits, labels, self._ignore_label)
    loss = tf_utils.safe_mean(self._mse_loss(actual_scores, predicted_scores))
    return loss