segmentation_input.py 8.41 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Data parser and processing for segmentation datasets."""

import tensorflow as tf
from official.vision.dataloaders import decoder
from official.vision.dataloaders import parser
from official.vision.ops import preprocess_ops


class Decoder(decoder.Decoder):
  """A tf.Example decoder for segmentation task."""

  def __init__(self):
    self._keys_to_features = {
        'image/encoded': tf.io.FixedLenFeature((), tf.string, default_value=''),
        'image/height': tf.io.FixedLenFeature((), tf.int64, default_value=0),
        'image/width': tf.io.FixedLenFeature((), tf.int64, default_value=0),
        'image/segmentation/class/encoded':
            tf.io.FixedLenFeature((), tf.string, default_value='')
    }

  def decode(self, serialized_example):
    return tf.io.parse_single_example(
        serialized_example, self._keys_to_features)


class Parser(parser.Parser):
  """Parser to parse an image and its annotations into a dictionary of tensors.
  """

  def __init__(self,
               output_size,
               crop_size=None,
               resize_eval_groundtruth=True,
               groundtruth_padded_size=None,
               ignore_label=255,
               aug_rand_hflip=False,
               preserve_aspect_ratio=True,
               aug_scale_min=1.0,
               aug_scale_max=1.0,
               dtype='float32'):
    """Initializes parameters for parsing annotations in the dataset.

    Args:
      output_size: `Tensor` or `list` for [height, width] of output image. The
        output_size should be divided by the largest feature stride 2^max_level.
      crop_size: `Tensor` or `list` for [height, width] of the crop. If
        specified a training crop of size crop_size is returned. This is useful
        for cropping original images during training while evaluating on
        original image sizes.
      resize_eval_groundtruth: `bool`, if True, eval groundtruth masks are
        resized to output_size.
      groundtruth_padded_size: `Tensor` or `list` for [height, width]. When
        resize_eval_groundtruth is set to False, the groundtruth masks are
        padded to this size.
      ignore_label: `int` the pixel with ignore label will not used for training
        and evaluation.
      aug_rand_hflip: `bool`, if True, augment training with random
        horizontal flip.
      preserve_aspect_ratio: `bool`, if True, the aspect ratio is preserved,
        otherwise, the image is resized to output_size.
      aug_scale_min: `float`, the minimum scale applied to `output_size` for
        data augmentation during training.
      aug_scale_max: `float`, the maximum scale applied to `output_size` for
        data augmentation during training.
      dtype: `str`, data type. One of {`bfloat16`, `float32`, `float16`}.
    """
    self._output_size = output_size
    self._crop_size = crop_size
    self._resize_eval_groundtruth = resize_eval_groundtruth
    if (not resize_eval_groundtruth) and (groundtruth_padded_size is None):
      raise ValueError('groundtruth_padded_size ([height, width]) needs to be'
                       'specified when resize_eval_groundtruth is False.')
    self._groundtruth_padded_size = groundtruth_padded_size
    self._ignore_label = ignore_label
    self._preserve_aspect_ratio = preserve_aspect_ratio

    # Data augmentation.
    self._aug_rand_hflip = aug_rand_hflip
    self._aug_scale_min = aug_scale_min
    self._aug_scale_max = aug_scale_max

    # dtype.
    self._dtype = dtype

  def _prepare_image_and_label(self, data):
    """Prepare normalized image and label."""
    image = tf.io.decode_image(data['image/encoded'], channels=3)
    label = tf.io.decode_image(data['image/segmentation/class/encoded'],
                               channels=1)
    height = data['image/height']
    width = data['image/width']
    image = tf.reshape(image, (height, width, 3))

    label = tf.reshape(label, (1, height, width))
    label = tf.cast(label, tf.float32)
    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image)

    if not self._preserve_aspect_ratio:
      label = tf.reshape(label, [data['image/height'], data['image/width'], 1])
      image = tf.image.resize(image, self._output_size, method='bilinear')
      label = tf.image.resize(label, self._output_size, method='nearest')
      label = tf.reshape(label[:, :, -1], [1] + self._output_size)

    return image, label

  def _parse_train_data(self, data):
    """Parses data for training and evaluation."""
    image, label = self._prepare_image_and_label(data)

    if self._crop_size:

      label = tf.reshape(label, [data['image/height'], data['image/width'], 1])
      # If output_size is specified, resize image, and label to desired
      # output_size.
      if self._output_size:
        image = tf.image.resize(image, self._output_size, method='bilinear')
        label = tf.image.resize(label, self._output_size, method='nearest')

      image_mask = tf.concat([image, label], axis=2)
      image_mask_crop = tf.image.random_crop(image_mask,
                                             self._crop_size + [4])
      image = image_mask_crop[:, :, :-1]
      label = tf.reshape(image_mask_crop[:, :, -1], [1] + self._crop_size)

    # Flips image randomly during training.
    if self._aug_rand_hflip:
      image, _, label = preprocess_ops.random_horizontal_flip(
          image, masks=label)

    train_image_size = self._crop_size if self._crop_size else self._output_size
    # Resizes and crops image.
    image, image_info = preprocess_ops.resize_and_crop_image(
        image,
        train_image_size,
        train_image_size,
        aug_scale_min=self._aug_scale_min,
        aug_scale_max=self._aug_scale_max)

    # Resizes and crops boxes.
    image_scale = image_info[2, :]
    offset = image_info[3, :]

    # Pad label and make sure the padded region assigned to the ignore label.
    # The label is first offset by +1 and then padded with 0.
    label += 1
    label = tf.expand_dims(label, axis=3)
    label = preprocess_ops.resize_and_crop_masks(
        label, image_scale, train_image_size, offset)
    label -= 1
    label = tf.where(tf.equal(label, -1),
                     self._ignore_label * tf.ones_like(label), label)
    label = tf.squeeze(label, axis=0)
    valid_mask = tf.not_equal(label, self._ignore_label)
    labels = {
        'masks': label,
        'valid_masks': valid_mask,
        'image_info': image_info,
    }

    # Cast image as self._dtype
    image = tf.cast(image, dtype=self._dtype)

    return image, labels

  def _parse_eval_data(self, data):
    """Parses data for training and evaluation."""
    image, label = self._prepare_image_and_label(data)
    # The label is first offset by +1 and then padded with 0.
    label += 1
    label = tf.expand_dims(label, axis=3)

    # Resizes and crops image.
    image, image_info = preprocess_ops.resize_and_crop_image(
        image, self._output_size, self._output_size)

    if self._resize_eval_groundtruth:
      # Resizes eval masks to match input image sizes. In that case, mean IoU
      # is computed on output_size not the original size of the images.
      image_scale = image_info[2, :]
      offset = image_info[3, :]
      label = preprocess_ops.resize_and_crop_masks(label, image_scale,
                                                   self._output_size, offset)
    else:
      label = tf.image.pad_to_bounding_box(
          label, 0, 0, self._groundtruth_padded_size[0],
          self._groundtruth_padded_size[1])

    label -= 1
    label = tf.where(tf.equal(label, -1),
                     self._ignore_label * tf.ones_like(label), label)
    label = tf.squeeze(label, axis=0)

    valid_mask = tf.not_equal(label, self._ignore_label)
    labels = {
        'masks': label,
        'valid_masks': valid_mask,
        'image_info': image_info
    }

    # Cast image as self._dtype
    image = tf.cast(image, dtype=self._dtype)

    return image, labels