bert_pretrainer.py 4.93 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Trainer network for BERT-style models."""
16
# pylint: disable=g-classes-have-attributes
Hongkun Yu's avatar
Hongkun Yu committed
17
18
19
20
21
22
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

import copy
Hongkun Yu's avatar
Hongkun Yu committed
23
import tensorflow as tf
Hongkun Yu's avatar
Hongkun Yu committed
24
25
26
27
28
29
30
31
32
33
34
35

from official.nlp.modeling import networks


@tf.keras.utils.register_keras_serializable(package='Text')
class BertPretrainer(tf.keras.Model):
  """BERT network training model.

  This is an implementation of the network structure surrounding a transformer
  encoder as described in "BERT: Pre-training of Deep Bidirectional Transformers
  for Language Understanding" (https://arxiv.org/abs/1810.04805).

36
37
38
  The BertPretrainer allows a user to pass in a transformer stack, and
  instantiates the masked language model and classification networks that are
  used to create the training objectives.
Hongkun Yu's avatar
Hongkun Yu committed
39

40
  Arguments:
Hongkun Yu's avatar
Hongkun Yu committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    network: A transformer network. This network should output a sequence output
      and a classification output. Furthermore, it should expose its embedding
      table via a "get_embedding_table" method.
    num_classes: Number of classes to predict from the classification network.
    num_token_predictions: Number of tokens to predict from the masked LM.
    activation: The activation (if any) to use in the masked LM and
      classification networks. If None, no activation will be used.
    initializer: The initializer (if any) to use in the masked LM and
      classification networks. Defaults to a Glorot uniform initializer.
    output: The output style for this network. Can be either 'logits' or
      'predictions'.
  """

  def __init__(self,
               network,
               num_classes,
               num_token_predictions,
               activation=None,
               initializer='glorot_uniform',
               output='logits',
               **kwargs):
    self._self_setattr_tracking = False
    self._config = {
        'network': network,
        'num_classes': num_classes,
        'num_token_predictions': num_token_predictions,
        'activation': activation,
        'initializer': initializer,
        'output': output,
    }

    # We want to use the inputs of the passed network as the inputs to this
    # Model. To do this, we need to keep a copy of the network inputs for use
    # when we construct the Model object at the end of init. (We keep a copy
    # because we'll be adding another tensor to the copy later.)
    network_inputs = network.inputs
    inputs = copy.copy(network_inputs)

    # Because we have a copy of inputs to create this Model object, we can
    # invoke the Network object with its own input tensors to start the Model.
    # Note that, because of how deferred construction happens, we can't use
    # the copy of the list here - by the time the network is invoked, the list
    # object contains the additional input added below.
    sequence_output, cls_output = network(network_inputs)

    sequence_output_length = sequence_output.shape.as_list()[1]
    if sequence_output_length < num_token_predictions:
      raise ValueError(
          "The passed network's output length is %s, which is less than the "
          'requested num_token_predictions %s.' %
          (sequence_output_length, num_token_predictions))

    masked_lm_positions = tf.keras.layers.Input(
        shape=(num_token_predictions,),
        name='masked_lm_positions',
        dtype=tf.int32)
    inputs.append(masked_lm_positions)

    self.masked_lm = networks.MaskedLM(
        num_predictions=num_token_predictions,
        input_width=sequence_output.shape[-1],
        source_network=network,
        activation=activation,
        initializer=initializer,
        output=output,
        name='masked_lm')
    lm_outputs = self.masked_lm([sequence_output, masked_lm_positions])

    self.classification = networks.Classification(
        input_width=cls_output.shape[-1],
        num_classes=num_classes,
        initializer=initializer,
        output=output,
        name='classification')
    sentence_outputs = self.classification(cls_output)

    super(BertPretrainer, self).__init__(
        inputs=inputs, outputs=[lm_outputs, sentence_outputs], **kwargs)

  def get_config(self):
    return self._config

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)