neural_gpu_trainer.py 16.3 KB
Newer Older
Lukasz Kaiser's avatar
Lukasz Kaiser committed
1
2
3
4
5
6
7
8
9
10
11
12
13
"""Neural GPU for Learning Algorithms."""

import math
import os
import random
import sys
import time

import matplotlib.animation as anim
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf

14
15
16
17
from tensorflow.python.platform import gfile

import data_utils as data
import neural_gpu
Lukasz Kaiser's avatar
Lukasz Kaiser committed
18
19
20
21
22
23
24

tf.app.flags.DEFINE_float("lr", 0.1, "Learning rate.")
tf.app.flags.DEFINE_float("init_weight", 1.0, "Initial weights deviation.")
tf.app.flags.DEFINE_float("max_grad_norm", 0.05, "Clip gradients to this norm.")
tf.app.flags.DEFINE_float("cutoff", 1.2, "Cutoff at the gates.")
tf.app.flags.DEFINE_float("pull", 0.0005, "Starting pull of the relaxations.")
tf.app.flags.DEFINE_float("pull_incr", 1.2, "Increase pull by that much.")
Lukasz Kaiser's avatar
Lukasz Kaiser committed
25
tf.app.flags.DEFINE_float("curriculum_bound", 0.06, "Move curriculum < this.")
26
tf.app.flags.DEFINE_float("dropout", 0.15, "Dropout that much.")
Lukasz Kaiser's avatar
Lukasz Kaiser committed
27
28
29
tf.app.flags.DEFINE_float("grad_noise_scale", 1.0, "Gradient noise scale.")
tf.app.flags.DEFINE_integer("batch_size", 64, "Batch size.")
tf.app.flags.DEFINE_integer("low_batch_size", 16, "Low batch size.")
Lukasz Kaiser's avatar
Lukasz Kaiser committed
30
tf.app.flags.DEFINE_integer("steps_per_checkpoint", 200, "Steps per epoch.")
Lukasz Kaiser's avatar
Lukasz Kaiser committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
tf.app.flags.DEFINE_integer("nmaps", 24, "Number of floats in each cell.")
tf.app.flags.DEFINE_integer("niclass", 14, "Number of classes (0 is padding).")
tf.app.flags.DEFINE_integer("noclass", 14, "Number of classes (0 is padding).")
tf.app.flags.DEFINE_integer("train_data_size", 5000, "Training examples/len.")
tf.app.flags.DEFINE_integer("max_length", 41, "Maximum length.")
tf.app.flags.DEFINE_integer("rx_step", 6, "Relax that many recursive steps.")
tf.app.flags.DEFINE_integer("random_seed", 125459, "Random seed.")
tf.app.flags.DEFINE_integer("nconvs", 2, "How many convolutions / 1 step.")
tf.app.flags.DEFINE_integer("kw", 3, "Kernel width.")
tf.app.flags.DEFINE_integer("kh", 3, "Kernel height.")
tf.app.flags.DEFINE_integer("height", 4, "Height.")
tf.app.flags.DEFINE_integer("forward_max", 401, "Maximum forward length.")
tf.app.flags.DEFINE_integer("jobid", -1, "Task id when running on borg.")
tf.app.flags.DEFINE_integer("nprint", 0, "How many test examples to print out.")
tf.app.flags.DEFINE_integer("mode", 0, "Mode: 0-train other-decode.")
tf.app.flags.DEFINE_string("task", "rev", "Which task are we learning?")
tf.app.flags.DEFINE_string("train_dir", "/tmp/", "Directory to store models.")

FLAGS = tf.app.flags.FLAGS
50
EXTRA_EVAL = 12
Lukasz Kaiser's avatar
Lukasz Kaiser committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70


def initialize(sess):
  """Initialize data and model."""
  if FLAGS.jobid >= 0:
    data.log_filename = os.path.join(FLAGS.train_dir, "log%d" % FLAGS.jobid)
  data.print_out("NN ", newline=False)

  # Set random seed.
  seed = FLAGS.random_seed + max(0, FLAGS.jobid)
  tf.set_random_seed(seed)
  random.seed(seed)
  np.random.seed(seed)

  # Check data sizes.
  data.forward_max = max(FLAGS.forward_max, data.bins[-1])
  assert data.bins
  min_length = 3
  max_length = min(FLAGS.max_length, data.bins[-1])
  assert max_length + 1 > min_length
71
  while len(data.bins) > 1 and data.bins[-2] > max_length + EXTRA_EVAL:
Lukasz Kaiser's avatar
Lukasz Kaiser committed
72
73
74
75
76
77
78
79
    data.bins = data.bins[:-1]
  assert data.bins[0] > FLAGS.rx_step
  nclass = min(FLAGS.niclass, FLAGS.noclass)
  data_size = FLAGS.train_data_size if FLAGS.mode == 0 else 1000

  # Initialize data for each task.
  tasks = FLAGS.task.split("-")
  for t in tasks:
80
    for l in xrange(max_length + EXTRA_EVAL - 1):
Lukasz Kaiser's avatar
Lukasz Kaiser committed
81
82
83
84
85
86
87
      data.init_data(t, l, data_size, nclass)
    data.init_data(t, data.bins[-2], data_size, nclass)
    data.init_data(t, data.bins[-1], data_size, nclass)
    end_size = 4 * 1024 if FLAGS.mode > 0 else 1024
    data.init_data(t, data.forward_max, end_size, nclass)

  # Print out parameters.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
88
  curriculum = FLAGS.curriculum_bound
89
90
91
92
93
94
95
96
  msg1 = ("layers %d kw %d h %d kh %d relax %d batch %d noise %.2f task %s"
          % (FLAGS.nconvs, FLAGS.kw, FLAGS.height, FLAGS.kh, FLAGS.rx_step,
             FLAGS.batch_size, FLAGS.grad_noise_scale, FLAGS.task))
  msg2 = "data %d %s" % (FLAGS.train_data_size, msg1)
  msg3 = ("cut %.2f pull %.3f lr %.2f iw %.2f cr %.2f nm %d d%.4f gn %.2f %s" %
          (FLAGS.cutoff, FLAGS.pull_incr, FLAGS.lr, FLAGS.init_weight,
           curriculum, FLAGS.nmaps, FLAGS.dropout, FLAGS.max_grad_norm, msg2))
  data.print_out(msg3)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
97
98
99
100
101
102
103
104
105
106
107

  # Create checkpoint directory if it does not exist.
  checkpoint_dir = os.path.join(FLAGS.train_dir, "neural_gpu%s"
                                % ("" if FLAGS.jobid < 0 else str(FLAGS.jobid)))
  if not gfile.IsDirectory(checkpoint_dir):
    data.print_out("Creating checkpoint directory %s." % checkpoint_dir)
    gfile.MkDir(checkpoint_dir)

  # Create model and initialize it.
  tf.get_variable_scope().set_initializer(
      tf.uniform_unit_scaling_initializer(factor=1.8 * FLAGS.init_weight))
108
  model = neural_gpu.NeuralGPU(
Lukasz Kaiser's avatar
Lukasz Kaiser committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
      FLAGS.nmaps, FLAGS.nmaps, FLAGS.niclass, FLAGS.noclass, FLAGS.dropout,
      FLAGS.rx_step, FLAGS.max_grad_norm, FLAGS.cutoff, FLAGS.nconvs,
      FLAGS.kw, FLAGS.kh, FLAGS.height, FLAGS.mode, FLAGS.lr,
      FLAGS.pull, FLAGS.pull_incr, min_length + 3)
  data.print_out("Created model.")
  sess.run(tf.initialize_all_variables())
  data.print_out("Initialized variables.")

  # Load model from parameters if a checkpoint exists.
  ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
  if ckpt and gfile.Exists(ckpt.model_checkpoint_path):
    data.print_out("Reading model parameters from %s"
                   % ckpt.model_checkpoint_path)
    model.saver.restore(sess, ckpt.model_checkpoint_path)

  # Return the model and needed variables.
  return (model, min_length, max_length, checkpoint_dir, curriculum)


def single_test(l, model, sess, task, nprint, batch_size, print_out=True,
                offset=None):
  """Test model on test data of length l using the given session."""
  inpt, target = data.get_batch(l, batch_size, False, task, offset)
  _, res, _, steps = model.step(sess, inpt, target, False)
133
134
  errors, total, seq_err = data.accuracy(inpt, res, target, batch_size, nprint)
  seq_err = float(seq_err) / batch_size
Lukasz Kaiser's avatar
Lukasz Kaiser committed
135
136
137
138
  if total > 0:
    errors = float(errors) / total
  if print_out:
    data.print_out("  %s len %d errors %.2f sequence-errors %.2f"
139
140
                   % (task, l, 100*errors, 100*seq_err))
  return errors, seq_err, (steps, inpt, [np.argmax(o, axis=1) for o in res])
Lukasz Kaiser's avatar
Lukasz Kaiser committed
141
142
143
144


def multi_test(l, model, sess, task, nprint, batch_size, offset=None):
  """Run multiple tests at lower batch size to save memory."""
145
  errors, seq_err = 0.0, 0.0
Lukasz Kaiser's avatar
Lukasz Kaiser committed
146
147
148
149
150
  to_print = nprint
  low_batch = FLAGS.low_batch_size
  low_batch = min(low_batch, batch_size)
  for mstep in xrange(batch_size / low_batch):
    cur_offset = None if offset is None else offset + mstep * low_batch
151
152
    err, sq_err, _ = single_test(l, model, sess, task, to_print, low_batch,
                                 False, cur_offset)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
153
154
    to_print = max(0, to_print - low_batch)
    errors += err
155
    seq_err += sq_err
Lukasz Kaiser's avatar
Lukasz Kaiser committed
156
157
    if FLAGS.mode > 0:
      cur_errors = float(low_batch * errors) / ((mstep+1) * low_batch)
158
      cur_seq_err = float(low_batch * seq_err) / ((mstep+1) * low_batch)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
159
      data.print_out("    %s multitest current errors %.2f sequence-errors %.2f"
160
                     % (task, 100*cur_errors, 100*cur_seq_err))
Lukasz Kaiser's avatar
Lukasz Kaiser committed
161
  errors = float(low_batch) * float(errors) / batch_size
162
  seq_err = float(low_batch) * float(seq_err) / batch_size
Lukasz Kaiser's avatar
Lukasz Kaiser committed
163
  data.print_out("  %s len %d errors %.2f sequence-errors %.2f"
164
165
                 % (task, l, 100*errors, 100*seq_err))
  return errors, seq_err
Lukasz Kaiser's avatar
Lukasz Kaiser committed
166
167
168


def train():
169
  """Train the model."""
Lukasz Kaiser's avatar
Lukasz Kaiser committed
170
171
172
173
174
175
  batch_size = FLAGS.batch_size
  tasks = FLAGS.task.split("-")
  with tf.Session() as sess:
    model, min_length, max_length, checkpoint_dir, curriculum = initialize(sess)
    max_cur_length = min(min_length + 3, max_length)
    prev_acc_perp = [1000000 for _ in xrange(3)]
176
    prev_seq_err = 1.0
Lukasz Kaiser's avatar
Lukasz Kaiser committed
177

178
    # Main traning loop.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
179
180
181
    while True:
      global_step, pull, max_cur_length, learning_rate = sess.run(
          [model.global_step, model.pull, model.cur_length, model.lr])
182
      acc_loss, acc_total, acc_errors, acc_seq_err = 0.0, 0, 0, 0
Lukasz Kaiser's avatar
Lukasz Kaiser committed
183
184
185
186
      acc_grad_norm, step_count, step_time = 0.0, 0, 0.0
      for _ in xrange(FLAGS.steps_per_checkpoint):
        global_step += 1
        task = random.choice(tasks)
187
188
189
190
191
192

        # Select the length for curriculum learning.
        l = np.random.randint(max_cur_length - min_length + 1) + min_length
        # Prefer longer stuff 60% of time.
        if np.random.randint(100) < 60:
          l1 = np.random.randint(max_cur_length - min_length+1) + min_length
Lukasz Kaiser's avatar
Lukasz Kaiser committed
193
          l = max(l, l1)
194
195
196
        # Mixed curriculum learning: in 25% of cases go to any larger length.
        if np.random.randint(100) < 25:
          l1 = np.random.randint(max_length - min_length + 1) + min_length
Lukasz Kaiser's avatar
Lukasz Kaiser committed
197
          l = max(l, l1)
198
199

        # Run a step and time it.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
200
201
        start_time = time.time()
        inp, target = data.get_batch(l, batch_size, True, task)
202
203
        noise_param = math.sqrt(math.pow(global_step, -0.55) *
                                (20 * prev_seq_err)) * FLAGS.grad_noise_scale
Lukasz Kaiser's avatar
Lukasz Kaiser committed
204
205
206
        loss, res, gnorm, _ = model.step(sess, inp, target, True, noise_param)
        step_time += time.time() - start_time
        acc_grad_norm += float(gnorm)
207
208

        # Accumulate statistics only if we did not exceed curriculum length.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
209
210
211
        if l < max_cur_length + 1:
          step_count += 1
          acc_loss += loss
212
213
          errors, total, seq_err = data.accuracy(inp, res, target,
                                                 batch_size, 0)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
214
215
          acc_total += total
          acc_errors += errors
216
217
218
          acc_seq_err += seq_err

      # Normalize and print out accumulated statistics.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
219
220
      acc_loss /= step_count
      step_time /= FLAGS.steps_per_checkpoint
221
222
      acc_seq_err = float(acc_seq_err) / (step_count * batch_size)
      prev_seq_err = acc_seq_err
Lukasz Kaiser's avatar
Lukasz Kaiser committed
223
      acc_errors = float(acc_errors) / acc_total if acc_total > 0 else 1.0
224
225
226
227
228
229
230
231
232
233
234
      msg1 = "step %d step-time %.2f" % (global_step, step_time)
      msg2 = "lr %.8f pull %.3f" % (learning_rate, pull)
      msg3 = ("%s %s grad-norm %.8f"
              % (msg1, msg2, acc_grad_norm / FLAGS.steps_per_checkpoint))
      data.print_out("%s len %d ppx %.8f errors %.2f sequence-errors %.2f" %
                     (msg3, max_cur_length, data.safe_exp(acc_loss),
                      100*acc_errors, 100*acc_seq_err))

      # If errors are below the curriculum threshold, move curriculum forward.
      if curriculum > acc_seq_err:
        # Increase current length (until the next with training data).
Lukasz Kaiser's avatar
Lukasz Kaiser committed
235
236
237
238
239
        do_incr = True
        while do_incr and max_cur_length < max_length:
          sess.run(model.cur_length_incr_op)
          for t in tasks:
            if data.train_set[t]: do_incr = False
240
241
242
243
        # Forget last perplexities if we're not yet at the end.
        if max_cur_length < max_length:
          prev_acc_perp.append(1000000)
        # Either increase pull or, if it's large, average parameters.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
244
245
246
247
248
        if pull < 1:
          sess.run(model.pull_incr_op)
        else:
          data.print_out("  Averaging parameters.")
          sess.run([model.avg_op, model.lr_decay_op])
249
250
251
252
253
254
255
256

      # Lower learning rate if we're worse than the last 3 checkpoints.
      acc_perp = data.safe_exp(acc_loss)
      if acc_perp > max(prev_acc_perp[-3:]):
        sess.run(model.lr_decay_op)
      prev_acc_perp.append(acc_perp)

      # Save checkpoint.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
257
258
259
      checkpoint_path = os.path.join(checkpoint_dir, "neural_gpu.ckpt")
      model.saver.save(sess, checkpoint_path,
                       global_step=model.global_step)
260

Lukasz Kaiser's avatar
Lukasz Kaiser committed
261
262
263
264
      # Run evaluation.
      bound = data.bins[-1] + 1
      for t in tasks:
        l = min_length
265
266
267
        while l < max_length + EXTRA_EVAL and l < bound:
          _, seq_err, _ = single_test(l, model, sess, t,
                                      FLAGS.nprint, batch_size)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
268
269
270
          l += 1
          while l < bound + 1 and not data.test_set[t][l]:
            l += 1
271
272
273
274
        if seq_err < 0.5:  # Run larger test if we're good enough.
          _, seq_err = multi_test(data.forward_max, model, sess, t,
                                  FLAGS.nprint, batch_size * 4)
      if seq_err < 0.01:  # Super-large test on 1-task large-forward models.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
275
276
277
278
279
280
281
        if data.forward_max > 4000 and len(tasks) == 1:
          multi_test(data.forward_max, model, sess, tasks[0], FLAGS.nprint,
                     batch_size * 16, 0)


def animate(l, test_data, anim_size):
  """Create animation for the given data (hacky matplotlib use)."""
282
283
284
285
  xf = 12  # Extra frames to slow down at start and end.
  fps = 2  # Frames per step.

  # Make the figure.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
286
287
288
289
290
291
  fig = plt.figure(figsize=(16, 9), facecolor="white")
  ax = fig.add_axes([0, 0, 1, 1], frameon=False, zorder=2)
  ax.set_xticks([i * 24-0.5 for i in xrange(4)])
  ax.set_xticklabels([])
  ax.set_yticks([i - 0.5 for i in xrange(l+1)])
  ax.grid(which="major", axis="both", linestyle="-", color="black")
292
  # We need text fields.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
293
294
295
296
297
298
299
300
301
302
303
  text_fields = []
  text_size = 24*32/l
  for y in xrange(l):
    text_fields.append(ax.text(
        11.25, y + 0.15, "", color="g", ha="center", va="center",
        bbox={"facecolor": "b", "alpha": 0.01, "pad": 24 * text_size},
        size=text_size - (4 * 32 / l), animated=True))
  im = ax.imshow(np.zeros_like(test_data[0][0][0]), vmin=-1.0,
                 vmax=1.0, cmap="gray", aspect="auto", origin="upper",
                 interpolation="none", animated=True)
  im.set_zorder(1)
304
305

  # Main animation step.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
  def animation_update(frame_no, test_data, xf, im, text_fields):
    """Update an animation frame."""
    steps, inpt, out_raw = test_data
    length = len(steps)
    batch = frame_no / (fps * (l+4*xf))
    index = int((frame_no % (fps * (l+4*xf))) / fps)
    # Cut output after first padding.
    out = [out_raw[i][batch] for i in xrange(len(text_fields))]
    if 0 in out:
      i = out.index(0)
      out = out[0:i] + [0 for _ in xrange(len(out) - i)]
    # Show the state after the first frames.
    if index >= 2*xf:
      im.set_array(steps[min(length - 1, index - 2*xf)][batch])
      for i, t in enumerate(text_fields):
        if index - 2*xf < length:
          t.set_text("")
        else:
324
          t.set_text(data.to_symbol(out[i]))
Lukasz Kaiser's avatar
Lukasz Kaiser committed
325
326
    else:
      for i, t in enumerate(text_fields):
327
        t.set_text(data.to_symbol(inpt[i][batch]) if index < xf else "")
Lukasz Kaiser's avatar
Lukasz Kaiser committed
328
329
330
331
332
      if index < xf:
        im.set_array(np.zeros_like(steps[0][0]))
      else:
        im.set_array(steps[0][batch])
    return im,
333
334

  # Create the animation and save to mp4.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
  animation = anim.FuncAnimation(
      fig, animation_update, blit=True, frames=(l+4*xf)*anim_size*fps,
      interval=500/fps, fargs=(test_data, xf, im, text_fields))
  animation.save("/tmp/neural_gpu.mp4", writer="mencoder", fps=4*fps, dpi=3*80)


def evaluate():
  """Evaluate an existing model."""
  batch_size = FLAGS.batch_size
  tasks = FLAGS.task.split("-")
  with tf.Session() as sess:
    model, min_length, max_length, _, _ = initialize(sess)
    bound = data.bins[-1] + 1
    for t in tasks:
      l = min_length
350
351
      while l < max_length + EXTRA_EVAL and l < bound:
        _, seq_err, _ = single_test(l, model, sess, t, FLAGS.nprint, batch_size)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
352
353
354
355
356
357
358
359
        l += 1
        while l < bound + 1 and not data.test_set[t][l]:
          l += 1
      # Animate.
      anim_size = 2
      _, _, test_data = single_test(l, model, sess, t, 0, anim_size)
      animate(l, test_data, anim_size)
      # More tests.
360
361
362
      _, seq_err = multi_test(data.forward_max, model, sess, t, FLAGS.nprint,
                              batch_size * 4)
    if seq_err < 0.01:  # Super-test if we're very good and in large-test mode.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
363
364
365
366
367
368
369
370
371
      if data.forward_max > 4000 and len(tasks) == 1:
        multi_test(data.forward_max, model, sess, tasks[0], FLAGS.nprint,
                   batch_size * 64, 0)


def interactive():
  """Interactively probe an existing model."""
  with tf.Session() as sess:
    model, _, _, _, _ = initialize(sess)
372
    sys.stdout.write("Input to Neural GPU, e.g., 0 1. Use -1 for PAD.\n")
Lukasz Kaiser's avatar
Lukasz Kaiser committed
373
374
375
376
    sys.stdout.write("> ")
    sys.stdout.flush()
    inpt = sys.stdin.readline()
    while inpt:
377
      ids = [data.to_id(s) for s in inpt.strip().split()]
Lukasz Kaiser's avatar
Lukasz Kaiser committed
378
379
380
381
      inpt, target = data.get_batch(len(ids), 1, False, "",
                                    preset=(ids, [0 for _ in ids]))
      _, res, _, _ = model.step(sess, inpt, target, False)
      res = [np.argmax(o, axis=1) for o in res]
382
383
      res = [o for o in res[:len(ids)] if o > 0]
      print "  " + " ".join([data.to_symbol(output[0]) for output in res])
Lukasz Kaiser's avatar
Lukasz Kaiser committed
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
      sys.stdout.write("> ")
      sys.stdout.flush()
      inpt = sys.stdin.readline()


def main(_):
  if FLAGS.mode == 0:
    train()
  elif FLAGS.mode == 1:
    evaluate()
  else:
    interactive()

if __name__ == "__main__":
  tf.app.run()