resnet.py 14.6 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

15
"""Contains definitions of ResNet and ResNet-RS models."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
16

Fan Yang's avatar
Fan Yang committed
17
18
from typing import Callable, Optional

Abdullah Rashwan's avatar
Abdullah Rashwan committed
19
20
# Import libraries
import tensorflow as tf
Fan Yang's avatar
Fan Yang committed
21
22

from official.modeling import hyperparams
Abdullah Rashwan's avatar
Abdullah Rashwan committed
23
from official.modeling import tf_utils
Yeqing Li's avatar
Yeqing Li committed
24
from official.vision.beta.modeling.backbones import factory
Abdullah Rashwan's avatar
Abdullah Rashwan committed
25
from official.vision.beta.modeling.layers import nn_blocks
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
26
from official.vision.beta.modeling.layers import nn_layers
Abdullah Rashwan's avatar
Abdullah Rashwan committed
27
28
29
30
31
32
33
34

layers = tf.keras.layers

# Specifications for different ResNet variants.
# Each entry specifies block configurations of the particular ResNet variant.
# Each element in the block configuration is in the following format:
# (block_fn, num_filters, block_repeats)
RESNET_SPECS = {
Fan Yang's avatar
Fan Yang committed
35
36
37
38
39
40
    10: [
        ('residual', 64, 1),
        ('residual', 128, 1),
        ('residual', 256, 1),
        ('residual', 512, 1),
    ],
Abdullah Rashwan's avatar
Abdullah Rashwan committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    18: [
        ('residual', 64, 2),
        ('residual', 128, 2),
        ('residual', 256, 2),
        ('residual', 512, 2),
    ],
    34: [
        ('residual', 64, 3),
        ('residual', 128, 4),
        ('residual', 256, 6),
        ('residual', 512, 3),
    ],
    50: [
        ('bottleneck', 64, 3),
        ('bottleneck', 128, 4),
        ('bottleneck', 256, 6),
        ('bottleneck', 512, 3),
    ],
    101: [
        ('bottleneck', 64, 3),
        ('bottleneck', 128, 4),
        ('bottleneck', 256, 23),
        ('bottleneck', 512, 3),
    ],
    152: [
        ('bottleneck', 64, 3),
        ('bottleneck', 128, 8),
        ('bottleneck', 256, 36),
        ('bottleneck', 512, 3),
    ],
    200: [
        ('bottleneck', 64, 3),
        ('bottleneck', 128, 24),
        ('bottleneck', 256, 36),
        ('bottleneck', 512, 3),
    ],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
77
    270: [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
78
        ('bottleneck', 64, 4),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
79
80
        ('bottleneck', 128, 29),
        ('bottleneck', 256, 53),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
81
82
        ('bottleneck', 512, 4),
    ],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
83
84
85
86
87
88
    350: [
        ('bottleneck', 64, 4),
        ('bottleneck', 128, 36),
        ('bottleneck', 256, 72),
        ('bottleneck', 512, 4),
    ],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
89
90
91
92
93
94
    420: [
        ('bottleneck', 64, 4),
        ('bottleneck', 128, 44),
        ('bottleneck', 256, 87),
        ('bottleneck', 512, 4),
    ],
Abdullah Rashwan's avatar
Abdullah Rashwan committed
95
96
97
98
99
}


@tf.keras.utils.register_keras_serializable(package='Vision')
class ResNet(tf.keras.Model):
100
  """Creates ResNet and ResNet-RS family models.
Fan Yang's avatar
Fan Yang committed
101
102
103
104

  This implements the Deep Residual Network from:
    Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
    Deep Residual Learning for Image Recognition.
105
106
107
108
109
    (https://arxiv.org/pdf/1512.03385) and
    Irwan Bello, William Fedus, Xianzhi Du, Ekin D. Cubuk, Aravind Srinivas,
    Tsung-Yi Lin, Jonathon Shlens, Barret Zoph.
    Revisiting ResNets: Improved Training and Scaling Strategies.
    (https://arxiv.org/abs/2103.07579).
Fan Yang's avatar
Fan Yang committed
110
  """
Abdullah Rashwan's avatar
Abdullah Rashwan committed
111

Fan Yang's avatar
Fan Yang committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
  def __init__(
      self,
      model_id: int,
      input_specs: tf.keras.layers.InputSpec = layers.InputSpec(
          shape=[None, None, None, 3]),
      depth_multiplier: float = 1.0,
      stem_type: str = 'v0',
      resnetd_shortcut: bool = False,
      replace_stem_max_pool: bool = False,
      se_ratio: Optional[float] = None,
      init_stochastic_depth_rate: float = 0.0,
      activation: str = 'relu',
      use_sync_bn: bool = False,
      norm_momentum: float = 0.99,
      norm_epsilon: float = 0.001,
      kernel_initializer: str = 'VarianceScaling',
      kernel_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
      bias_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
      **kwargs):
Fan Yang's avatar
Fan Yang committed
131
    """Initializes a ResNet model.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
132
133

    Args:
Fan Yang's avatar
Fan Yang committed
134
135
136
      model_id: An `int` of the depth of ResNet backbone model.
      input_specs: A `tf.keras.layers.InputSpec` of the input tensor.
      depth_multiplier: A `float` of the depth multiplier to uniformaly scale up
137
138
        all layers in channel size. This argument is also referred to as
        `width_multiplier` in (https://arxiv.org/abs/2103.07579).
Fan Yang's avatar
Fan Yang committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
      stem_type: A `str` of stem type of ResNet. Default to `v0`. If set to
        `v1`, use ResNet-D type stem (https://arxiv.org/abs/1812.01187).
      resnetd_shortcut: A `bool` of whether to use ResNet-D shortcut in
        downsampling blocks.
      replace_stem_max_pool: A `bool` of whether to replace the max pool in stem
        with a stride-2 conv,
      se_ratio: A `float` or None. Ratio of the Squeeze-and-Excitation layer.
      init_stochastic_depth_rate: A `float` of initial stochastic depth rate.
      activation: A `str` name of the activation function.
      use_sync_bn: If True, use synchronized batch normalization.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A small `float` added to variance to avoid dividing by zero.
      kernel_initializer: A str for kernel initializer of convolutional layers.
      kernel_regularizer: A `tf.keras.regularizers.Regularizer` object for
        Conv2D. Default to None.
      bias_regularizer: A `tf.keras.regularizers.Regularizer` object for Conv2D.
        Default to None.
      **kwargs: Additional keyword arguments to be passed.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
157
158
159
    """
    self._model_id = model_id
    self._input_specs = input_specs
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
160
    self._depth_multiplier = depth_multiplier
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
161
    self._stem_type = stem_type
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
162
163
    self._resnetd_shortcut = resnetd_shortcut
    self._replace_stem_max_pool = replace_stem_max_pool
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
164
    self._se_ratio = se_ratio
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
165
    self._init_stochastic_depth_rate = init_stochastic_depth_rate
Abdullah Rashwan's avatar
Abdullah Rashwan committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
    self._use_sync_bn = use_sync_bn
    self._activation = activation
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
    if use_sync_bn:
      self._norm = layers.experimental.SyncBatchNormalization
    else:
      self._norm = layers.BatchNormalization
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer
    self._bias_regularizer = bias_regularizer

    if tf.keras.backend.image_data_format() == 'channels_last':
      bn_axis = -1
    else:
      bn_axis = 1

    # Build ResNet.
    inputs = tf.keras.Input(shape=input_specs.shape[1:])

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
186
187
    if stem_type == 'v0':
      x = layers.Conv2D(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
188
          filters=int(64 * self._depth_multiplier),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
189
190
191
192
193
194
195
196
197
198
199
          kernel_size=7,
          strides=2,
          use_bias=False,
          padding='same',
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer)(
              inputs)
      x = self._norm(
          axis=bn_axis, momentum=norm_momentum, epsilon=norm_epsilon)(
              x)
200
      x = tf_utils.get_activation(activation, use_keras_layer=True)(x)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
201
202
    elif stem_type == 'v1':
      x = layers.Conv2D(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
203
          filters=int(32 * self._depth_multiplier),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
204
205
206
207
208
209
210
211
212
213
214
          kernel_size=3,
          strides=2,
          use_bias=False,
          padding='same',
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer)(
              inputs)
      x = self._norm(
          axis=bn_axis, momentum=norm_momentum, epsilon=norm_epsilon)(
              x)
215
      x = tf_utils.get_activation(activation, use_keras_layer=True)(x)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
216
      x = layers.Conv2D(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
217
          filters=int(32 * self._depth_multiplier),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
218
219
220
221
222
223
224
225
226
227
228
          kernel_size=3,
          strides=1,
          use_bias=False,
          padding='same',
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer)(
              x)
      x = self._norm(
          axis=bn_axis, momentum=norm_momentum, epsilon=norm_epsilon)(
              x)
229
      x = tf_utils.get_activation(activation, use_keras_layer=True)(x)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
230
      x = layers.Conv2D(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
231
          filters=int(64 * self._depth_multiplier),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
232
233
234
235
236
237
238
239
240
241
242
          kernel_size=3,
          strides=1,
          use_bias=False,
          padding='same',
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer)(
              x)
      x = self._norm(
          axis=bn_axis, momentum=norm_momentum, epsilon=norm_epsilon)(
              x)
243
      x = tf_utils.get_activation(activation, use_keras_layer=True)(x)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
244
245
246
    else:
      raise ValueError('Stem type {} not supported.'.format(stem_type))

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
    if replace_stem_max_pool:
      x = layers.Conv2D(
          filters=int(64 * self._depth_multiplier),
          kernel_size=3,
          strides=2,
          use_bias=False,
          padding='same',
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer)(
              x)
      x = self._norm(
          axis=bn_axis, momentum=norm_momentum, epsilon=norm_epsilon)(
              x)
261
      x = tf_utils.get_activation(activation, use_keras_layer=True)(x)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
262
263
    else:
      x = layers.MaxPool2D(pool_size=3, strides=2, padding='same')(x)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
264
265
266
267
268
269
270
271
272
273
274

    endpoints = {}
    for i, spec in enumerate(RESNET_SPECS[model_id]):
      if spec[0] == 'residual':
        block_fn = nn_blocks.ResidualBlock
      elif spec[0] == 'bottleneck':
        block_fn = nn_blocks.BottleneckBlock
      else:
        raise ValueError('Block fn `{}` is not supported.'.format(spec[0]))
      x = self._block_group(
          inputs=x,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
275
          filters=int(spec[1] * self._depth_multiplier),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
276
277
278
          strides=(1 if i == 0 else 2),
          block_fn=block_fn,
          block_repeats=spec[2],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
279
280
          stochastic_depth_drop_rate=nn_layers.get_stochastic_depth_rate(
              self._init_stochastic_depth_rate, i + 2, 5),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
281
          name='block_group_l{}'.format(i + 2))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
282
      endpoints[str(i + 2)] = x
Abdullah Rashwan's avatar
Abdullah Rashwan committed
283
284
285
286
287
288

    self._output_specs = {l: endpoints[l].get_shape() for l in endpoints}

    super(ResNet, self).__init__(inputs=inputs, outputs=endpoints, **kwargs)

  def _block_group(self,
Fan Yang's avatar
Fan Yang committed
289
290
291
292
293
294
295
                   inputs: tf.Tensor,
                   filters: int,
                   strides: int,
                   block_fn: Callable[..., tf.keras.layers.Layer],
                   block_repeats: int = 1,
                   stochastic_depth_drop_rate: float = 0.0,
                   name: str = 'block_group'):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
296
297
298
    """Creates one group of blocks for the ResNet model.

    Args:
Fan Yang's avatar
Fan Yang committed
299
300
301
302
303
304
305
306
307
308
309
      inputs: A `tf.Tensor` of size `[batch, channels, height, width]`.
      filters: An `int` number of filters for the first convolution of the
        layer.
      strides: An `int` stride to use for the first convolution of the layer.
        If greater than 1, this layer will downsample the input.
      block_fn: The type of block group. Either `nn_blocks.ResidualBlock` or
        `nn_blocks.BottleneckBlock`.
      block_repeats: An `int` number of blocks contained in the layer.
      stochastic_depth_drop_rate: A `float` of drop rate of the current block
        group.
      name: A `str` name for the block.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
310
311

    Returns:
Fan Yang's avatar
Fan Yang committed
312
      The output `tf.Tensor` of the block layer.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
313
314
315
316
317
    """
    x = block_fn(
        filters=filters,
        strides=strides,
        use_projection=True,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
318
        stochastic_depth_drop_rate=stochastic_depth_drop_rate,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
319
        se_ratio=self._se_ratio,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
320
        resnetd_shortcut=self._resnetd_shortcut,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activation=self._activation,
        use_sync_bn=self._use_sync_bn,
        norm_momentum=self._norm_momentum,
        norm_epsilon=self._norm_epsilon)(
            inputs)

    for _ in range(1, block_repeats):
      x = block_fn(
          filters=filters,
          strides=1,
          use_projection=False,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
335
          stochastic_depth_drop_rate=stochastic_depth_drop_rate,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
336
          se_ratio=self._se_ratio,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
337
          resnetd_shortcut=self._resnetd_shortcut,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
338
339
340
341
342
343
344
345
346
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer,
          activation=self._activation,
          use_sync_bn=self._use_sync_bn,
          norm_momentum=self._norm_momentum,
          norm_epsilon=self._norm_epsilon)(
              x)

347
    return tf.keras.layers.Activation('linear', name=name)(x)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
348
349
350
351

  def get_config(self):
    config_dict = {
        'model_id': self._model_id,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
352
        'depth_multiplier': self._depth_multiplier,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
353
        'stem_type': self._stem_type,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
354
355
        'resnetd_shortcut': self._resnetd_shortcut,
        'replace_stem_max_pool': self._replace_stem_max_pool,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
356
        'activation': self._activation,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
357
        'se_ratio': self._se_ratio,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
358
        'init_stochastic_depth_rate': self._init_stochastic_depth_rate,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
        'use_sync_bn': self._use_sync_bn,
        'norm_momentum': self._norm_momentum,
        'norm_epsilon': self._norm_epsilon,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'bias_regularizer': self._bias_regularizer,
    }
    return config_dict

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)

  @property
  def output_specs(self):
    """A dict of {level: TensorShape} pairs for the model output."""
    return self._output_specs
Yeqing Li's avatar
Yeqing Li committed
376
377
378
379
380


@factory.register_backbone_builder('resnet')
def build_resnet(
    input_specs: tf.keras.layers.InputSpec,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
381
382
    backbone_config: hyperparams.Config,
    norm_activation_config: hyperparams.Config,
Yeqing Li's avatar
Yeqing Li committed
383
    l2_regularizer: tf.keras.regularizers.Regularizer = None) -> tf.keras.Model:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
384
  """Builds ResNet backbone from a config."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
385
386
  backbone_type = backbone_config.type
  backbone_cfg = backbone_config.get()
Yeqing Li's avatar
Yeqing Li committed
387
388
389
390
391
392
  assert backbone_type == 'resnet', (f'Inconsistent backbone type '
                                     f'{backbone_type}')

  return ResNet(
      model_id=backbone_cfg.model_id,
      input_specs=input_specs,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
393
      depth_multiplier=backbone_cfg.depth_multiplier,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
394
      stem_type=backbone_cfg.stem_type,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
395
396
      resnetd_shortcut=backbone_cfg.resnetd_shortcut,
      replace_stem_max_pool=backbone_cfg.replace_stem_max_pool,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
397
      se_ratio=backbone_cfg.se_ratio,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
398
      init_stochastic_depth_rate=backbone_cfg.stochastic_depth_drop_rate,
Yeqing Li's avatar
Yeqing Li committed
399
400
401
402
403
      activation=norm_activation_config.activation,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon,
      kernel_regularizer=l2_regularizer)