README.md 3.64 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# NLP example project

This is a tutorial for setting up your project using TF-NLP library. Here we
focus on the scaffolding of project and pay little attention to any modeling
aspects.

Below we use classification as an example.

## Setup your codebase

First you need to define the
[Task](https://github.com/tensorflow/models/blob/master/official/core/base_task.py)
by inheirting it. Task is an abstraction of any machine learning task, here we
focus on two things inputs and optimization target.

NOTE: We use BertClassifier as base model. You can shop other models
[here](https://github.com/tensorflow/models/blob/master/official/nlp/modeling/models).

#### Step 1: build\_inputs

Here we use [CoLA](https://nyu-mll.github.io/CoLA/), a binary classification
task as an example.

TODO(saberkun): Add demo data instructions.

There are 4 fields we care about in the tf.Example, input_ids, input_mask,
segment_ids and label_ids. Then we start with a simple data loader by inheriting
the
[DataLoader](https://github.com/tensorflow/models/blob/master/official/nlp/data/data_loader.py)
interface.

```python
class ClassificationDataLoader(data_loader.DataLoader):
  ...
  def _parse(self, record: Mapping[str, tf.Tensor]):
    """Parses raw tensors into a dict of tensors to be consumed by the model."""
    x = {
        'input_word_ids': record['input_ids'],
        'input_mask': record['input_mask'],
        'input_type_ids': record['segment_ids']
    }
    y = record['label_ids']
    return (x, y)
  ...
```

Overall, loader will translate the tf.Example to approiate format for model to
consume. Then in Task.build_inputs, link the dataset like

```python
def build_inputs(self):
  ...
  loader = classification_data_loader.ClassificationDataLoader(params)
  return loader.load(input_context)
```

#### Step 2: build\_losses

We use standard cross entropy loss and make sure the `build_losses()` returns a
float scalar Tensor.

```python
def build_losses(self, labels, model_outputs, aux_losses=None):
  loss = tf.keras.losses.sparse_categorical_crossentropy(
      labels, tf.cast(model_outputs, tf.float32), from_logits=True)
  ...
```

#### Try the workflow locally.

We use a small BERT model for local trial and error. Below is the command:

```shell
# Assume you are under official/nlp/projects.

python3 example/train.py \
  --experiment=example_bert_classification_example \
  --config_file=example/local_example.yaml \
  --mode=train \
  --model_dir=/tmp/example_project_test/
```

The train binary translates the config file for the experiments. Usually you may
just change the task import logics:

```python
task_config = classification_example.ClassificationExampleConfig()
task = classification_example.ClassificationExampleTask(task_config)
```

TIPs: You can also check the [unittest](https://github.com/tensorflow/models/blob/master/official/nlp/projects/example/classification_example_test.py)
for better understanding.

### Finetune

TF-NLP make it easy to start from a [pretrained checkpoint](https://github.com/tensorflow/models/blob/master/official/nlp/docs/pretrained_models.md),
try below. This is done through configuring task.init_checkpoint in the YAML
config below, see the [base_task.initialize](https://github.com/tensorflow/models/blob/master/official/core/base_task.py)
method for more details.

We use GCP TPU to demonstrate this.

```shell
EXP_NAME=bert_base_cola
EXP_TYPE=example_bert_classification_example
CONFIG_FILE=example/experiments/classification_ft_cola.yaml
TPU_NAME=experiment01
MODEL_DIR=your GCS bucket folder

python3 example/train.py \
  --experiment=$EXP_TYPE \
  --mode=train_and_eval \
  --tpu=$TPU_NAME \
  --model_dir=${MODEL_DIR}
  --config_file=${CONFIG_FILE}
```