model_utils.py 7.29 KB
Newer Older
Chen Chen's avatar
Chen Chen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Checkpoint converter for Mobilebert."""
import copy
import json

import tensorflow.compat.v1 as tf

from official.modeling import tf_utils
from official.nlp.modeling import layers
from official.nlp.modeling import models
from official.nlp.modeling import networks


class BertConfig(object):
  """Configuration for `BertModel`."""

  def __init__(self,
               vocab_size,
               hidden_size=768,
               num_hidden_layers=12,
               num_attention_heads=12,
               intermediate_size=3072,
               hidden_act="gelu",
               hidden_dropout_prob=0.1,
               attention_probs_dropout_prob=0.1,
               max_position_embeddings=512,
               type_vocab_size=16,
               initializer_range=0.02,
               embedding_size=None,
               trigram_input=False,
               use_bottleneck=False,
               intra_bottleneck_size=None,
               use_bottleneck_attention=False,
               key_query_shared_bottleneck=False,
               num_feedforward_networks=1,
               normalization_type="layer_norm",
               classifier_activation=True):
    """Constructs BertConfig.

    Args:
      vocab_size: Vocabulary size of `inputs_ids` in `BertModel`.
      hidden_size: Size of the encoder layers and the pooler layer.
      num_hidden_layers: Number of hidden layers in the Transformer encoder.
      num_attention_heads: Number of attention heads for each attention layer in
        the Transformer encoder.
      intermediate_size: The size of the "intermediate" (i.e., feed-forward)
        layer in the Transformer encoder.
      hidden_act: The non-linear activation function (function or string) in the
        encoder and pooler.
      hidden_dropout_prob: The dropout probability for all fully connected
        layers in the embeddings, encoder, and pooler.
      attention_probs_dropout_prob: The dropout ratio for the attention
        probabilities.
      max_position_embeddings: The maximum sequence length that this model might
        ever be used with. Typically set this to something large just in case
        (e.g., 512 or 1024 or 2048).
      type_vocab_size: The vocabulary size of the `token_type_ids` passed into
        `BertModel`.
      initializer_range: The stdev of the truncated_normal_initializer for
        initializing all weight matrices.
      embedding_size: The size of the token embedding.
      trigram_input: Use a convolution of trigram as input.
      use_bottleneck: Use the bottleneck/inverted-bottleneck structure in BERT.
      intra_bottleneck_size: The hidden size in the bottleneck.
      use_bottleneck_attention: Use attention inputs from the bottleneck
        transformation.
      key_query_shared_bottleneck: Use the same linear transformation for
        query&key in the bottleneck.
      num_feedforward_networks: Number of FFNs in a block.
      normalization_type: The normalization type in BERT.
      classifier_activation: Using the tanh activation for the final
        representation of the [CLS] token in fine-tuning.
    """
    self.vocab_size = vocab_size
    self.hidden_size = hidden_size
    self.num_hidden_layers = num_hidden_layers
    self.num_attention_heads = num_attention_heads
    self.hidden_act = hidden_act
    self.intermediate_size = intermediate_size
    self.hidden_dropout_prob = hidden_dropout_prob
    self.attention_probs_dropout_prob = attention_probs_dropout_prob
    self.max_position_embeddings = max_position_embeddings
    self.type_vocab_size = type_vocab_size
    self.initializer_range = initializer_range
    self.embedding_size = embedding_size
    self.trigram_input = trigram_input
    self.use_bottleneck = use_bottleneck
    self.intra_bottleneck_size = intra_bottleneck_size
    self.use_bottleneck_attention = use_bottleneck_attention
    self.key_query_shared_bottleneck = key_query_shared_bottleneck
    self.num_feedforward_networks = num_feedforward_networks
    self.normalization_type = normalization_type
    self.classifier_activation = classifier_activation

  @classmethod
  def from_dict(cls, json_object):
    """Constructs a `BertConfig` from a Python dictionary of parameters."""
    config = BertConfig(vocab_size=None)
    for (key, value) in json_object.items():
      config.__dict__[key] = value
    if config.embedding_size is None:
      config.embedding_size = config.hidden_size
    if config.intra_bottleneck_size is None:
      config.intra_bottleneck_size = config.hidden_size
    return config

  @classmethod
  def from_json_file(cls, json_file):
    """Constructs a `BertConfig` from a json file of parameters."""
    with tf.gfile.GFile(json_file, "r") as reader:
      text = reader.read()
    return cls.from_dict(json.loads(text))

  def to_dict(self):
    """Serializes this instance to a Python dictionary."""
    output = copy.deepcopy(self.__dict__)
    return output

  def to_json_string(self):
    """Serializes this instance to a JSON string."""
    return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"


def create_mobilebert_pretrainer(bert_config):
  """Creates a BertPretrainerV2 that wraps MobileBERTEncoder model."""
  mobilebert_encoder = networks.MobileBERTEncoder(
      word_vocab_size=bert_config.vocab_size,
      word_embed_size=bert_config.embedding_size,
      type_vocab_size=bert_config.type_vocab_size,
      max_sequence_length=bert_config.max_position_embeddings,
      num_blocks=bert_config.num_hidden_layers,
      hidden_size=bert_config.hidden_size,
      num_attention_heads=bert_config.num_attention_heads,
      intermediate_size=bert_config.intermediate_size,
      intermediate_act_fn=tf_utils.get_activation(bert_config.hidden_act),
      hidden_dropout_prob=bert_config.hidden_dropout_prob,
      attention_probs_dropout_prob=bert_config.attention_probs_dropout_prob,
      intra_bottleneck_size=bert_config.intra_bottleneck_size,
      initializer_range=bert_config.initializer_range,
      use_bottleneck_attention=bert_config.use_bottleneck_attention,
      key_query_shared_bottleneck=bert_config.key_query_shared_bottleneck,
      num_feedforward_networks=bert_config.num_feedforward_networks,
      normalization_type=bert_config.normalization_type,
      classifier_activation=bert_config.classifier_activation)

  masked_lm = layers.MobileBertMaskedLM(
      embedding_table=mobilebert_encoder.get_embedding_table(),
      activation=tf_utils.get_activation(bert_config.hidden_act),
      initializer=tf.keras.initializers.TruncatedNormal(
          stddev=bert_config.initializer_range),
      name="cls/predictions")

  pretrainer = models.BertPretrainerV2(
      encoder_network=mobilebert_encoder, customized_masked_lm=masked_lm)
  # Makes sure the pretrainer variables are created.
  _ = pretrainer(pretrainer.inputs)
  return pretrainer