translate.py 5.09 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Translate text or files using trained transformer model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

from official.transformer.utils import tokenizer

_DECODE_BATCH_SIZE = 32
_EXTRA_DECODE_LENGTH = 100
_BEAM_SIZE = 4
_ALPHA = 0.6


def _get_sorted_inputs(filename):
  """Read and sort lines from the file sorted by decreasing length.

  Args:
    filename: String name of file to read inputs from.
  Returns:
    Sorted list of inputs, and dictionary mapping original index->sorted index
    of each element.
  """
  with tf.io.gfile.GFile(filename) as f:
    records = f.read().split("\n")
    inputs = [record.strip() for record in records]
    if not inputs[-1]:
      inputs.pop()

  input_lens = [(i, len(line.split())) for i, line in enumerate(inputs)]
  sorted_input_lens = sorted(input_lens, key=lambda x: x[1], reverse=True)

  sorted_inputs = [None] * len(sorted_input_lens)
  sorted_keys = [0] * len(sorted_input_lens)
  for i, (index, _) in enumerate(sorted_input_lens):
    sorted_inputs[i] = inputs[index]
    sorted_keys[index] = i
  return sorted_inputs, sorted_keys


def _encode_and_add_eos(line, subtokenizer):
  """Encode line with subtokenizer, and add EOS id to the end."""
  return subtokenizer.encode(line) + [tokenizer.EOS_ID]


def _trim_and_decode(ids, subtokenizer):
  """Trim EOS and PAD tokens from ids, and decode to return a string."""
  try:
    index = list(ids).index(tokenizer.EOS_ID)
    return subtokenizer.decode(ids[:index])
  except ValueError:  # No EOS found in sequence
    return subtokenizer.decode(ids)


def translate_file(
    model, subtokenizer, input_file, output_file=None,
    print_all_translations=True):
  """Translate lines in file, and save to output file if specified.

  Args:
    model: Keras model used to generate the translations.
    subtokenizer: Subtokenizer object for encoding and decoding source and
       translated lines.
    input_file: file containing lines to translate
    output_file: file that stores the generated translations.
    print_all_translations: If true, all translations are printed to stdout.

  Raises:
    ValueError: if output file is invalid.
  """
  batch_size = _DECODE_BATCH_SIZE

  # Read and sort inputs by length. Keep dictionary (original index-->new index
  # in sorted list) to write translations in the original order.
  sorted_inputs, sorted_keys = _get_sorted_inputs(input_file)
  total_samples = len(sorted_inputs)
  num_decode_batches = (total_samples - 1) // batch_size + 1

  def input_generator():
    """Yield encoded strings from sorted_inputs."""
    for i in range(num_decode_batches):
      lines = [
          sorted_inputs[j + i * batch_size]
          for j in range(batch_size)
          if j + i * batch_size < total_samples
      ]
      lines = [_encode_and_add_eos(l, subtokenizer) for l in lines]
      batch = tf.keras.preprocessing.sequence.pad_sequences(
          lines, dtype="int64", padding="post")
      tf.compat.v1.logging.info("Decoding batch %d out of %d.", i,
                                num_decode_batches)
      yield batch

  translations = []
  for i, text in enumerate(input_generator()):
    val_outputs, _ = model.predict(text)

    length = len(val_outputs)
    for j in range(length):
      translation = _trim_and_decode(val_outputs[j], subtokenizer)
      translations.append(translation)
      if print_all_translations:
        tf.compat.v1.logging.info(
            "Translating:\n\tInput: %s\n\tOutput: %s" %
            (sorted_inputs[j + i * batch_size], translation))

  # Write translations in the order they appeared in the original file.
  if output_file is not None:
    if tf.io.gfile.isdir(output_file):
      raise ValueError("File output is a directory, will not save outputs to "
                       "file.")
    tf.compat.v1.logging.info("Writing to file %s" % output_file)
    with tf.compat.v1.gfile.Open(output_file, "w") as f:
      for i in sorted_keys:
        f.write("%s\n" % translations[i])


def translate_from_text(model, subtokenizer, txt):
  encoded_txt = _encode_and_add_eos(txt, subtokenizer)
  result = model.predict(encoded_txt)
  outputs = result["outputs"]
  tf.compat.v1.logging.info("Original: \"%s\"" % txt)
  translate_from_input(outputs, subtokenizer)


def translate_from_input(outputs, subtokenizer):
  translation = _trim_and_decode(outputs, subtokenizer)
  tf.compat.v1.logging.info("Translation: \"%s\"" % translation)