optimization_config.py 3.96 KB
Newer Older
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Hongkun Yu's avatar
Hongkun Yu committed
14

Abdullah Rashwan's avatar
Abdullah Rashwan committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
"""Dataclasses for optimization configs.

This file define the dataclass for optimization configs (OptimizationConfig).
It also has two helper functions get_optimizer_config, and get_lr_config from
an OptimizationConfig class.
"""
from typing import Optional

import dataclasses

from official.modeling.hyperparams import base_config
from official.modeling.hyperparams import oneof
from official.modeling.optimization.configs import learning_rate_config as lr_cfg
from official.modeling.optimization.configs import optimizer_config as opt_cfg


@dataclasses.dataclass
class OptimizerConfig(oneof.OneOfConfig):
  """Configuration for optimizer.

  Attributes:
    type: 'str', type of optimizer to be used, on the of fields below.
    sgd: sgd optimizer config.
    adam: adam optimizer config.
    adamw: adam with weight decay.
    lamb: lamb optimizer.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
41
    rmsprop: rmsprop optimizer.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
42
43
44
45
46
47
  """
  type: Optional[str] = None
  sgd: opt_cfg.SGDConfig = opt_cfg.SGDConfig()
  adam: opt_cfg.AdamConfig = opt_cfg.AdamConfig()
  adamw: opt_cfg.AdamWeightDecayConfig = opt_cfg.AdamWeightDecayConfig()
  lamb: opt_cfg.LAMBConfig = opt_cfg.LAMBConfig()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
48
  rmsprop: opt_cfg.RMSPropConfig = opt_cfg.RMSPropConfig()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
49
50
51
52
53
54
55
56


@dataclasses.dataclass
class LrConfig(oneof.OneOfConfig):
  """Configuration for lr schedule.

  Attributes:
    type: 'str', type of lr schedule to be used, on the of fields below.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
57
    constant: constant learning rate config.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
58
59
60
    stepwise: stepwise learning rate config.
    exponential: exponential learning rate config.
    polynomial: polynomial learning rate config.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
61
    cosine: cosine learning rate config.
62
    power: step^power learning rate config.
Le Hou's avatar
Le Hou committed
63
64
    power_linear: learning rate config of step^power followed by
      step^power*linear.
Le Hou's avatar
Le Hou committed
65
    power_with_offset: power decay with a step offset.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
66
67
  """
  type: Optional[str] = None
Abdullah Rashwan's avatar
Abdullah Rashwan committed
68
  constant: lr_cfg.ConstantLrConfig = lr_cfg.ConstantLrConfig()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
69
70
71
  stepwise: lr_cfg.StepwiseLrConfig = lr_cfg.StepwiseLrConfig()
  exponential: lr_cfg.ExponentialLrConfig = lr_cfg.ExponentialLrConfig()
  polynomial: lr_cfg.PolynomialLrConfig = lr_cfg.PolynomialLrConfig()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
72
  cosine: lr_cfg.CosineLrConfig = lr_cfg.CosineLrConfig()
73
  power: lr_cfg.DirectPowerLrConfig = lr_cfg.DirectPowerLrConfig()
Le Hou's avatar
Le Hou committed
74
75
  power_linear: lr_cfg.PowerAndLinearDecayLrConfig = (
      lr_cfg.PowerAndLinearDecayLrConfig())
Le Hou's avatar
Le Hou committed
76
77
  power_with_offset: lr_cfg.PowerDecayWithOffsetLrConfig = (
      lr_cfg.PowerDecayWithOffsetLrConfig())
Abdullah Rashwan's avatar
Abdullah Rashwan committed
78
79
80
81
82
83
84
85
86


@dataclasses.dataclass
class WarmupConfig(oneof.OneOfConfig):
  """Configuration for lr schedule.

  Attributes:
    type: 'str', type of warmup schedule to be used, on the of fields below.
    linear: linear warmup config.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
87
    polynomial: polynomial warmup config.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
88
89
90
  """
  type: Optional[str] = None
  linear: lr_cfg.LinearWarmupConfig = lr_cfg.LinearWarmupConfig()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
91
  polynomial: lr_cfg.PolynomialWarmupConfig = lr_cfg.PolynomialWarmupConfig()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
92
93
94
95
96
97
98
99


@dataclasses.dataclass
class OptimizationConfig(base_config.Config):
  """Configuration for optimizer and learning rate schedule.

  Attributes:
    optimizer: optimizer oneof config.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
100
101
    ema: optional exponential moving average optimizer config, if specified,
      ema optimizer will be used.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
102
103
104
105
    learning_rate: learning rate oneof config.
    warmup: warmup oneof config.
  """
  optimizer: OptimizerConfig = OptimizerConfig()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
106
  ema: Optional[opt_cfg.EMAConfig] = None
Abdullah Rashwan's avatar
Abdullah Rashwan committed
107
108
  learning_rate: LrConfig = LrConfig()
  warmup: WarmupConfig = WarmupConfig()