data_preprocessing.py 25.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Preprocess dataset and construct any necessary artifacts."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import atexit
import contextlib
import gc
24
import hashlib
25
26
27
28
29
import multiprocessing
import json
import os
import pickle
import signal
30
import socket
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import subprocess
import time
import timeit
import typing

# pylint: disable=wrong-import-order
from absl import app as absl_app
from absl import flags
import numpy as np
import pandas as pd
import six
import tensorflow as tf
# pylint: enable=wrong-import-order

from official.datasets import movielens
from official.recommendation import constants as rconst
from official.recommendation import stat_utils
48
from official.recommendation import popen_helper
49
50
51
52
53
54


class NCFDataset(object):
  """Container for training and testing data."""

  def __init__(self, user_map, item_map, num_data_readers, cache_paths,
55
               num_train_positives, deterministic=False):
56
57
58
59
60
61
62
63
    # type: (dict, dict, int, rconst.Paths) -> None
    """Assign key values for recommendation dataset.

    Args:
      user_map: Dict mapping raw user ids to regularized ids.
      item_map: Dict mapping raw item ids to regularized ids.
      num_data_readers: The number of reader Datasets used during training.
      cache_paths: Object containing locations for various cache files.
64
65
      num_train_positives: The number of positive training examples in the
        dataset.
66
67
      deterministic: Operations should use deterministic, order preserving
        methods, even at the cost of performance.
68
69
70
71
72
73
74
75
76
    """

    self.user_map = {int(k): int(v) for k, v in user_map.items()}
    self.item_map = {int(k): int(v) for k, v in item_map.items()}
    self.num_users = len(user_map)
    self.num_items = len(item_map)
    self.num_data_readers = num_data_readers
    self.cache_paths = cache_paths
    self.num_train_positives = num_train_positives
77
    self.deterministic = deterministic
78
79


80
81
def _filter_index_sort(raw_rating_path, match_mlperf):
  # type: (str, bool) -> (pd.DataFrame, dict, dict)
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
  """Read in data CSV, and output structured data.

  This function reads in the raw CSV of positive items, and performs three
  preprocessing transformations:

  1)  Filter out all users who have not rated at least a certain number
      of items. (Typically 20 items)

  2)  Zero index the users and items such that the largest user_id is
      `num_users - 1` and the largest item_id is `num_items - 1`

  3)  Sort the dataframe by user_id, with timestamp as a secondary sort key.
      This allows the dataframe to be sliced by user in-place, and for the last
      item to be selected simply by calling the `-1` index of a user's slice.

  While all of these transformations are performed by Pandas (and are therefore
  single-threaded), they only take ~2 minutes, and the overhead to apply a
  MapReduce pattern to parallel process the dataset adds significant complexity
  for no computational gain. For a larger dataset parallelizing this
  preprocessing could yield speedups. (Also, this preprocessing step is only
  performed once for an entire run.

  Args:
    raw_rating_path: The path to the CSV which contains the raw dataset.
106
107
    match_mlperf: If True, change the sorting algorithm to match the MLPerf
      reference implementation.
108
109

  Returns:
Reed's avatar
Reed committed
110
111
112
    A filtered, zero-index remapped, sorted dataframe, a dict mapping raw user
    IDs to regularized user IDs, and a dict mapping raw item IDs to regularized
    item IDs.
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
  """
  with tf.gfile.Open(raw_rating_path) as f:
    df = pd.read_csv(f)

  # Get the info of users who have more than 20 ratings on items
  grouped = df.groupby(movielens.USER_COLUMN)
  df = grouped.filter(
      lambda x: len(x) >= rconst.MIN_NUM_RATINGS) # type: pd.DataFrame

  original_users = df[movielens.USER_COLUMN].unique()
  original_items = df[movielens.ITEM_COLUMN].unique()

  # Map the ids of user and item to 0 based index for following processing
  tf.logging.info("Generating user_map and item_map...")
  user_map = {user: index for index, user in enumerate(original_users)}
  item_map = {item: index for index, item in enumerate(original_items)}

  df[movielens.USER_COLUMN] = df[movielens.USER_COLUMN].apply(
      lambda user: user_map[user])
  df[movielens.ITEM_COLUMN] = df[movielens.ITEM_COLUMN].apply(
      lambda item: item_map[item])

  num_users = len(original_users)
  num_items = len(original_items)

  assert num_users <= np.iinfo(np.int32).max
  assert num_items <= np.iinfo(np.uint16).max
  assert df[movielens.USER_COLUMN].max() == num_users - 1
  assert df[movielens.ITEM_COLUMN].max() == num_items - 1

  # This sort is used to shard the dataframe by user, and later to select
  # the last item for a user to be used in validation.
  tf.logging.info("Sorting by user, timestamp...")
146
147
148
149
150
151
152
153
154
155
156
157

  if match_mlperf:
    # This sort is equivalent to the non-MLPerf sort, except that the order of
    # items with the same user and timestamp are sometimes different. For some
    # reason, this sort results in a better hit-rate during evaluation, matching
    # the performance of the MLPerf reference implementation.
    df.sort_values(by=movielens.TIMESTAMP_COLUMN, inplace=True)
    df.sort_values([movielens.USER_COLUMN, movielens.TIMESTAMP_COLUMN],
                   inplace=True, kind="mergesort")
  else:
    df.sort_values([movielens.USER_COLUMN, movielens.TIMESTAMP_COLUMN],
                   inplace=True)
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

  df = df.reset_index()  # The dataframe does not reconstruct indicies in the
  # sort or filter steps.

  return df, user_map, item_map


def _train_eval_map_fn(args):
  # type: (...) -> typing.Dict(np.ndarray)
  """Split training and testing data and generate testing negatives.

  This function is called as part of a multiprocessing map. The principle
  input is a shard, which contains a sorted array of users and corresponding
  items for each user, where items have already been sorted in ascending order
  by timestamp. (Timestamp is not passed to avoid the serialization cost of
  sending it to the map function.)

  For each user, all but the last item is written into a pickle file which the
  training data producer can consume on as needed. The last item for a user
  is a validation point; for each validation point a number of negatives are
  generated (typically 999). The validation data is returned by this function,
  as it is held in memory for the remainder of the run.

  Args:
    shard: A dict containing the user and item arrays.
    shard_id: The id of the shard provided. This is used to number the training
      shard pickle files.
    num_items: The cardinality of the item set, which determines the set from
      which validation negatives should be drawn.
Reed's avatar
Reed committed
187
188
    cache_paths: rconst.Paths object containing locations for various cache
      files.
189
190
191
    seed: Random seed to be used when generating testing negatives.
    match_mlperf: If True, sample eval negative with replacements, which the
      MLPerf reference implementation does.
192
193
194
195
196

  Returns:
    A dict containing the evaluation data for a given shard.
  """

197
198
  shard, shard_id, num_items, cache_paths, seed, match_mlperf = args
  np.random.seed(seed)
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

  users = shard[movielens.USER_COLUMN]
  items = shard[movielens.ITEM_COLUMN]

  # This produces index boundaries which can be used to slice by user.
  delta = users[1:] - users[:-1]
  boundaries = ([0] + (np.argwhere(delta)[:, 0] + 1).tolist() +
                [users.shape[0]])

  train_blocks = []
  test_blocks = []
  test_positives = []
  for i in range(len(boundaries) - 1):
    # This is simply a vector of repeated values such that the shard could be
    # represented compactly with a tuple of tuples:
    #   ((user_id, items), (user_id, items), ...)
    # rather than:
    #   user_id_vector, item_id_vector
    # However the additional nested structure significantly increases the
    # serialization and deserialization cost such that it is not worthwhile.
    block_user = users[boundaries[i]:boundaries[i+1]]
    assert len(set(block_user)) == 1

    block_items = items[boundaries[i]:boundaries[i+1]]
    train_blocks.append((block_user[:-1], block_items[:-1]))

    test_negatives = stat_utils.sample_with_exclusion(
        num_items=num_items, positive_set=set(block_items),
227
        n=rconst.NUM_EVAL_NEGATIVES, replacement=match_mlperf)
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    test_blocks.append((
        block_user[0] * np.ones((rconst.NUM_EVAL_NEGATIVES + 1,),
                                dtype=np.int32),
        np.array([block_items[-1]] + test_negatives, dtype=np.uint16)
    ))
    test_positives.append((block_user[0], block_items[-1]))

  train_users = np.concatenate([i[0] for i in train_blocks])
  train_items = np.concatenate([i[1] for i in train_blocks])

  train_shard_fpath = cache_paths.train_shard_template.format(
      str(shard_id).zfill(5))

  with tf.gfile.Open(train_shard_fpath, "wb") as f:
    pickle.dump({
        movielens.USER_COLUMN: train_users,
        movielens.ITEM_COLUMN: train_items,
    }, f)

  test_users = np.concatenate([i[0] for i in test_blocks])
  test_items = np.concatenate([i[1] for i in test_blocks])
  assert test_users.shape == test_items.shape
  assert test_items.shape[0] % (rconst.NUM_EVAL_NEGATIVES + 1) == 0

  return {
      movielens.USER_COLUMN: test_users,
      movielens.ITEM_COLUMN: test_items,
  }


258
259
260
def generate_train_eval_data(df, approx_num_shards, num_items, cache_paths,
                             match_mlperf):
  # type: (pd.DataFrame, int, int, rconst.Paths, bool) -> None
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
  """Construct training and evaluation datasets.

  This function manages dataset construction and validation that the
  transformations have produced correct results. The particular logic of
  transforming the data is performed in _train_eval_map_fn().

  Args:
    df: The dataframe containing the entire dataset. It is essential that this
      dataframe be produced by _filter_index_sort(), as subsequent
      transformations rely on `df` having particular structure.
    approx_num_shards: The approximate number of similarly sized shards to
      construct from `df`. The MovieLens has severe imbalances where some users
      have interacted with many items; this is common among datasets involving
      user data. Rather than attempt to aggressively balance shard size, this
      function simply allows shards to "overflow" which can produce a number of
      shards which is less than `approx_num_shards`. This small degree of
      imbalance does not impact performance; however it does mean that one
      should not expect approx_num_shards to be the ACTUAL number of shards.
    num_items: The cardinality of the item set.
Reed's avatar
Reed committed
280
281
    cache_paths: rconst.Paths object containing locations for various cache
      files.
282
283
    match_mlperf: If True, sample eval negative with replacements, which the
      MLPerf reference implementation does.
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
  """

  num_rows = len(df)
  approximate_partitions = np.linspace(
      0, num_rows, approx_num_shards + 1).astype("int")
  start_ind, end_ind = 0, 0
  shards = []

  for i in range(1, approx_num_shards + 1):
    end_ind = approximate_partitions[i]
    while (end_ind < num_rows and df[movielens.USER_COLUMN][end_ind - 1] ==
           df[movielens.USER_COLUMN][end_ind]):
      end_ind += 1

    if end_ind <= start_ind:
      continue  # imbalance from prior shard.

    df_shard = df[start_ind:end_ind]
    user_shard = df_shard[movielens.USER_COLUMN].values.astype(np.int32)
    item_shard = df_shard[movielens.ITEM_COLUMN].values.astype(np.uint16)

    shards.append({
        movielens.USER_COLUMN: user_shard,
        movielens.ITEM_COLUMN: item_shard,
    })

    start_ind = end_ind
  assert end_ind == num_rows
  approx_num_shards = len(shards)

  tf.logging.info("Splitting train and test data and generating {} test "
                  "negatives per user...".format(rconst.NUM_EVAL_NEGATIVES))
  tf.gfile.MakeDirs(cache_paths.train_shard_subdir)

318
319
320
321
322
323
  # We choose a different random seed for each process, so that the processes
  # will not all choose the same random numbers.
  process_seeds = [np.random.randint(2**32) for _ in range(approx_num_shards)]
  map_args = [(shards[i], i, num_items, cache_paths, process_seeds[i],
               match_mlperf)
              for i in range(approx_num_shards)]
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
  with contextlib.closing(
      multiprocessing.Pool(multiprocessing.cpu_count())) as pool:
    test_shards = pool.map(_train_eval_map_fn, map_args)  # pylint: disable=no-member

  tf.logging.info("Merging test shards...")
  test_users = np.concatenate([i[movielens.USER_COLUMN] for i in test_shards])
  test_items = np.concatenate([i[movielens.ITEM_COLUMN] for i in test_shards])

  assert test_users.shape == test_items.shape
  assert test_items.shape[0] % (rconst.NUM_EVAL_NEGATIVES + 1) == 0

  test_labels = np.zeros(shape=test_users.shape)
  test_labels[0::(rconst.NUM_EVAL_NEGATIVES + 1)] = 1
  eval_data = ({
      movielens.USER_COLUMN: test_users,
      movielens.ITEM_COLUMN: test_items,
  }, test_labels)

  tf.logging.info("Writing test data to file.")
  tf.gfile.MakeDirs(cache_paths.eval_data_subdir)
  with tf.gfile.Open(cache_paths.eval_raw_file, "wb") as f:
Reed's avatar
Reed committed
345
    pickle.dump(eval_data, f, protocol=pickle.HIGHEST_PROTOCOL)
346
347


348
349
def construct_cache(dataset, data_dir, num_data_readers, match_mlperf,
                    deterministic):
350
  # type: (str, str, int, bool) -> NCFDataset
351
352
353
354
355
356
357
  """Load and digest data CSV into a usable form.

  Args:
    dataset: The name of the dataset to be used.
    data_dir: The root directory of the dataset.
    num_data_readers: The number of parallel processes which will request
      data during training.
358
359
    match_mlperf: If True, change the behavior of the cache construction to
      match the MLPerf reference implementation.
360
361
    deterministic: Try to enforce repeatable behavior, even at the cost of
      performance.
362
363
  """
  cache_paths = rconst.Paths(data_dir=data_dir)
364
365
  num_data_readers = (num_data_readers or int(multiprocessing.cpu_count() / 2)
                      or 1)
366
367
368
369
370
371
372
373
374
375
376
377
  approx_num_shards = int(movielens.NUM_RATINGS[dataset]
                          // rconst.APPROX_PTS_PER_TRAIN_SHARD) or 1

  st = timeit.default_timer()
  cache_root = os.path.join(data_dir, cache_paths.cache_root)
  if tf.gfile.Exists(cache_root):
    raise ValueError("{} unexpectedly already exists."
                     .format(cache_paths.cache_root))
  tf.logging.info("Creating cache directory. This should be deleted on exit.")
  tf.gfile.MakeDirs(cache_paths.cache_root)

  raw_rating_path = os.path.join(data_dir, dataset, movielens.RATINGS_FILE)
378
  df, user_map, item_map = _filter_index_sort(raw_rating_path, match_mlperf)
379
380

  generate_train_eval_data(df=df, approx_num_shards=approx_num_shards,
381
382
                           num_items=len(item_map), cache_paths=cache_paths,
                           match_mlperf=match_mlperf)
383
384
385
386
387
  del approx_num_shards  # value may have changed.

  ncf_dataset = NCFDataset(user_map=user_map, item_map=item_map,
                           num_data_readers=num_data_readers,
                           cache_paths=cache_paths,
388
389
                           num_train_positives=len(df) - len(user_map),
                           deterministic=deterministic)
390
391
392
393
394
395
396
397
398
399
400
401
402

  run_time = timeit.default_timer() - st
  tf.logging.info("Cache construction complete. Time: {:.1f} sec."
                  .format(run_time))

  return ncf_dataset


def _shutdown(proc):
  # type: (subprocess.Popen) -> None
  """Convenience function to cleanly shut down async generation process."""

  tf.logging.info("Shutting down train data creation subprocess.")
403
404
405
406
407
408
409
410
  try:
    proc.send_signal(signal.SIGINT)
    time.sleep(1)
    if proc.returncode is not None:
      return  # SIGINT was handled successfully within 1 sec

  except socket.error:
    pass
411
412
413
414
415
416
417

  # Otherwise another second of grace period and then forcibly kill the process.
  time.sleep(1)
  proc.terminate()


def instantiate_pipeline(dataset, data_dir, batch_size, eval_batch_size,
418
                         num_data_readers=None, num_neg=4, epochs_per_cycle=1,
419
420
                         match_mlperf=False, deterministic=False):
  # type: (...) -> (NCFDataset, typing.Callable)
421
422
423
424
  """Preprocess data and start negative generation subprocess."""

  tf.logging.info("Beginning data preprocessing.")
  ncf_dataset = construct_cache(dataset=dataset, data_dir=data_dir,
425
                                num_data_readers=num_data_readers,
426
427
                                match_mlperf=match_mlperf,
                                deterministic=deterministic)
428
429
430
431
432
433
434
435
436
437
438
439

  tf.logging.info("Creating training file subprocess.")

  subproc_env = os.environ.copy()

  # The subprocess uses TensorFlow for tf.gfile, but it does not need GPU
  # resources and by default will try to allocate GPU memory. This would cause
  # contention with the main training process.
  subproc_env["CUDA_VISIBLE_DEVICES"] = ""

  # By limiting the number of workers we guarantee that the worker
  # pool underlying the training generation doesn't starve other processes.
440
  num_workers = int(multiprocessing.cpu_count() * 0.75) or 1
441

442
  subproc_args = popen_helper.INVOCATION + [
443
444
445
446
447
448
449
450
451
452
453
454
455
456
      "--data_dir", data_dir,
      "--cache_id", str(ncf_dataset.cache_paths.cache_id),
      "--num_neg", str(num_neg),
      "--num_train_positives", str(ncf_dataset.num_train_positives),
      "--num_items", str(ncf_dataset.num_items),
      "--num_readers", str(ncf_dataset.num_data_readers),
      "--epochs_per_cycle", str(epochs_per_cycle),
      "--train_batch_size", str(batch_size),
      "--eval_batch_size", str(eval_batch_size),
      "--num_workers", str(num_workers),
      "--spillover", "True",  # This allows the training input function to
                              # guarantee batch size and significantly improves
                              # performance. (~5% increase in examples/sec on
                              # GPU, and needed for TPU XLA.)
457
      "--redirect_logs", "True"
458
  ]
459
460
  if ncf_dataset.deterministic:
    subproc_args.extend(["--seed", str(int(stat_utils.random_int32()))])
461
462
463
464

  tf.logging.info(
      "Generation subprocess command: {}".format(" ".join(subproc_args)))

465
  proc = subprocess.Popen(args=subproc_args, shell=False, env=subproc_env)
466

467
468
469
470
471
472
473
474
475
476
477
478
479
480
  cleanup_called = {"finished": False}
  @atexit.register
  def cleanup():
    """Remove files and subprocess from data generation."""
    if cleanup_called["finished"]:
      return

    _shutdown(proc)
    try:
      tf.gfile.DeleteRecursively(ncf_dataset.cache_paths.cache_root)
    except tf.errors.NotFoundError:
      pass

    cleanup_called["finished"] = True
481

482
  for _ in range(300):
483
484
485
486
487
488
489
    if tf.gfile.Exists(ncf_dataset.cache_paths.subproc_alive):
      break
    time.sleep(1)  # allow `alive` file to be written
  if not tf.gfile.Exists(ncf_dataset.cache_paths.subproc_alive):
    raise ValueError("Generation subprocess did not start correctly. Data will "
                     "not be available; exiting to avoid waiting forever.")

490
  return ncf_dataset, cleanup
491
492
493
494
495
496
497
498
499
500


def make_deserialize(params, batch_size, training=False):
  """Construct deserialize function for training and eval fns."""
  feature_map = {
      movielens.USER_COLUMN: tf.FixedLenFeature([], dtype=tf.string),
      movielens.ITEM_COLUMN: tf.FixedLenFeature([], dtype=tf.string),
  }
  if training:
    feature_map["labels"] = tf.FixedLenFeature([], dtype=tf.string)
501
502
  else:
    feature_map[rconst.DUPLICATE_MASK] = tf.FixedLenFeature([], dtype=tf.string)
503
504
505
506
507
508
509
510
511
512
513
514
515

  def deserialize(examples_serialized):
    """Called by Dataset.map() to convert batches of records to tensors."""
    features = tf.parse_single_example(examples_serialized, feature_map)
    users = tf.reshape(tf.decode_raw(
        features[movielens.USER_COLUMN], tf.int32), (batch_size,))
    items = tf.reshape(tf.decode_raw(
        features[movielens.ITEM_COLUMN], tf.uint16), (batch_size,))

    if params["use_tpu"]:
      items = tf.cast(items, tf.int32)  # TPU doesn't allow uint16 infeed.

    if not training:
516
517
      dupe_mask = tf.reshape(tf.cast(tf.decode_raw(
          features[rconst.DUPLICATE_MASK], tf.int8), tf.bool), (batch_size,))
518
519
520
      return {
          movielens.USER_COLUMN: users,
          movielens.ITEM_COLUMN: items,
521
          rconst.DUPLICATE_MASK: dupe_mask,
522
523
524
525
      }

    labels = tf.reshape(tf.cast(tf.decode_raw(
        features["labels"], tf.int8), tf.bool), (batch_size,))
526

527
528
529
530
531
532
533
    return {
        movielens.USER_COLUMN: users,
        movielens.ITEM_COLUMN: items,
    }, labels
  return deserialize


534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
def hash_pipeline(dataset, deterministic):
  # type: (tf.data.Dataset, bool) -> None
  """Utility function for detecting non-determinism in the data pipeline.

  Args:
    dataset: a tf.data.Dataset generated by the input_fn
    deterministic: Does the input_fn expect the dataset to be deterministic.
      (i.e. fixed seed, sloppy=False, etc.)
  """
  if not deterministic:
    tf.logging.warning("Data pipeline is not marked as deterministic. Hash "
                       "values are not expected to be meaningful.")

  batch = dataset.make_one_shot_iterator().get_next()
  md5 = hashlib.md5()
  count = 0
  first_batch_hash = b""
  with tf.Session() as sess:
    while True:
      try:
        result = sess.run(batch)
        if isinstance(result, tuple):
          result = result[0]  # only hash features
      except tf.errors.OutOfRangeError:
        break

      count += 1
      md5.update(memoryview(result[movielens.USER_COLUMN]).tobytes())
      md5.update(memoryview(result[movielens.ITEM_COLUMN]).tobytes())
      if count == 1:
        first_batch_hash = md5.hexdigest()
  overall_hash = md5.hexdigest()
  tf.logging.info("Batch count: {}".format(count))
  tf.logging.info("  [pipeline_hash] First batch hash: {}".format(
      first_batch_hash))
  tf.logging.info("  [pipeline_hash] All batches hash: {}".format(overall_hash))


572
573
574
575
576
def make_train_input_fn(ncf_dataset):
  # type: (NCFDataset) -> (typing.Callable, str, int)
  """Construct training input_fn for the current epoch."""

  if not tf.gfile.Exists(ncf_dataset.cache_paths.subproc_alive):
577
578
579
580
    # The generation subprocess must have been alive at some point, because we
    # earlier checked that the subproc_alive file existed.
    raise ValueError("Generation subprocess unexpectedly died. Data will not "
                     "be available; exiting to avoid waiting forever.")
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629

  train_epoch_dir = ncf_dataset.cache_paths.train_epoch_dir
  while not tf.gfile.Exists(train_epoch_dir):
    tf.logging.info("Waiting for {} to exist.".format(train_epoch_dir))
    time.sleep(1)

  train_data_dirs = tf.gfile.ListDirectory(train_epoch_dir)
  while not train_data_dirs:
    tf.logging.info("Waiting for data folder to be created.")
    time.sleep(1)
    train_data_dirs = tf.gfile.ListDirectory(train_epoch_dir)
  train_data_dirs.sort()  # names are zfilled so that
                          # lexicographic sort == numeric sort
  record_dir = os.path.join(train_epoch_dir, train_data_dirs[0])

  ready_file = os.path.join(record_dir, rconst.READY_FILE)
  while not tf.gfile.Exists(ready_file):
    tf.logging.info("Waiting for records in {} to be ready".format(record_dir))
    time.sleep(1)

  with tf.gfile.Open(ready_file, "r") as f:
    epoch_metadata = json.load(f)

  # The data pipeline uses spillover to guarantee static batch sizes. This
  # means that an extra batch will need to be run every few epochs. TPUs
  # require that the number of batches to be run is known at the time that
  # estimator.train() is called, so having the generation pipeline report
  # number of batches guarantees that this count is correct.
  batch_count = epoch_metadata["batch_count"]

  def input_fn(params):
    """Generated input_fn for the given epoch."""
    batch_size = params["batch_size"]

    if epoch_metadata["batch_size"] != batch_size:
      raise ValueError(
          "Records were constructed with batch size {}, but input_fn was given "
          "a batch size of {}. This will result in a deserialization error in "
          "tf.parse_single_example."
          .format(epoch_metadata["batch_size"], batch_size))

    record_files = tf.data.Dataset.list_files(
        os.path.join(record_dir, rconst.TRAIN_RECORD_TEMPLATE.format("*")),
        shuffle=False)

    interleave = tf.contrib.data.parallel_interleave(
        tf.data.TFRecordDataset,
        cycle_length=4,
        block_length=100000,
630
        sloppy=not ncf_dataset.deterministic,
631
632
633
634
635
636
        prefetch_input_elements=4,
    )

    deserialize = make_deserialize(params, batch_size, True)
    dataset = record_files.apply(interleave)
    dataset = dataset.map(deserialize, num_parallel_calls=4)
637
638
639
640
641
642
    dataset = dataset.prefetch(32)

    if params.get("hash_pipeline"):
      hash_pipeline(dataset, ncf_dataset.deterministic)

    return dataset
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666

  return input_fn, record_dir, batch_count


def make_pred_input_fn(ncf_dataset):
  # type: (NCFDataset) -> typing.Callable
  """Construct input_fn for metric evaluation."""

  def input_fn(params):
    """Input function based on eval batch size."""

    # Estimator has "eval_batch_size" included in the params, but TPUEstimator
    # populates "batch_size" to the appropriate value.
    batch_size = params.get("eval_batch_size") or params["batch_size"]
    record_file = ncf_dataset.cache_paths.eval_record_template.format(
        batch_size)
    while not tf.gfile.Exists(record_file):
      tf.logging.info(
          "Waiting for eval data to be written to {}".format(record_file))
      time.sleep(1)
    dataset = tf.data.TFRecordDataset(record_file)

    deserialize = make_deserialize(params, batch_size, False)
    dataset = dataset.map(deserialize, num_parallel_calls=4)
667
668
669
670
    dataset = dataset.prefetch(16)

    if params.get("hash_pipeline"):
      hash_pipeline(dataset, ncf_dataset.deterministic)
671

672
    return dataset
673
674

  return input_fn