resnet_model.py 11.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""ResNet50 model for Keras.

Adapted from tf.keras.applications.resnet50.ResNet50().
Shining Sun's avatar
Shining Sun committed
18
This is ResNet model version 1.5.
19
20
21
22
23
24
25
26
27
28
29

Related papers/blogs:
- https://arxiv.org/abs/1512.03385
- https://arxiv.org/pdf/1603.05027v2.pdf
- http://torch.ch/blog/2016/02/04/resnets.html

"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

30
31
import tensorflow as tf

32
from tensorflow.python.keras import backend
Zongwei Zhou's avatar
Zongwei Zhou committed
33
from tensorflow.python.keras import initializers
34
35
from tensorflow.python.keras import models
from tensorflow.python.keras import regularizers
Hongkun Yu's avatar
Hongkun Yu committed
36
from official.vision.image_classification import imagenet_preprocessing
37

38
39
layers = tf.keras.layers

40
41
42
43
44
L2_WEIGHT_DECAY = 1e-4
BATCH_NORM_DECAY = 0.9
BATCH_NORM_EPSILON = 1e-5


Zongwei Zhou's avatar
Zongwei Zhou committed
45
46
47
48
49
50
51
52
53
54
def _gen_l2_regularizer(use_l2_regularizer=True):
  return regularizers.l2(L2_WEIGHT_DECAY) if use_l2_regularizer else None


def identity_block(input_tensor,
                   kernel_size,
                   filters,
                   stage,
                   block,
                   use_l2_regularizer=True):
55
56
  """The identity block is the block that has no conv layer at shortcut.

57
58
59
60
61
62
  Args:
    input_tensor: input tensor
    kernel_size: default 3, the kernel size of middle conv layer at main path
    filters: list of integers, the filters of 3 conv layer at main path
    stage: integer, current stage label, used for generating layer names
    block: 'a','b'..., current block label, used for generating layer names
Zongwei Zhou's avatar
Zongwei Zhou committed
63
    use_l2_regularizer: whether to use L2 regularizer on Conv layer.
64

65
66
  Returns:
    Output tensor for the block.
67
68
69
70
71
72
73
74
75
  """
  filters1, filters2, filters3 = filters
  if backend.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

Zongwei Zhou's avatar
Zongwei Zhou committed
76
77
78
79
80
81
82
83
84
85
86
87
88
  x = layers.Conv2D(
      filters1, (1, 1),
      use_bias=False,
      kernel_initializer='he_normal',
      kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      name=conv_name_base + '2a')(
          input_tensor)
  x = layers.BatchNormalization(
      axis=bn_axis,
      momentum=BATCH_NORM_DECAY,
      epsilon=BATCH_NORM_EPSILON,
      name=bn_name_base + '2a')(
          x)
89
90
  x = layers.Activation('relu')(x)

Zongwei Zhou's avatar
Zongwei Zhou committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
  x = layers.Conv2D(
      filters2,
      kernel_size,
      padding='same',
      use_bias=False,
      kernel_initializer='he_normal',
      kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      name=conv_name_base + '2b')(
          x)
  x = layers.BatchNormalization(
      axis=bn_axis,
      momentum=BATCH_NORM_DECAY,
      epsilon=BATCH_NORM_EPSILON,
      name=bn_name_base + '2b')(
          x)
106
107
  x = layers.Activation('relu')(x)

Zongwei Zhou's avatar
Zongwei Zhou committed
108
109
110
111
112
113
114
115
116
117
118
119
120
  x = layers.Conv2D(
      filters3, (1, 1),
      use_bias=False,
      kernel_initializer='he_normal',
      kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      name=conv_name_base + '2c')(
          x)
  x = layers.BatchNormalization(
      axis=bn_axis,
      momentum=BATCH_NORM_DECAY,
      epsilon=BATCH_NORM_EPSILON,
      name=bn_name_base + '2c')(
          x)
121
122
123
124
125
126
127
128
129
130
131

  x = layers.add([x, input_tensor])
  x = layers.Activation('relu')(x)
  return x


def conv_block(input_tensor,
               kernel_size,
               filters,
               stage,
               block,
Zongwei Zhou's avatar
Zongwei Zhou committed
132
133
               strides=(2, 2),
               use_l2_regularizer=True):
134
135
136
137
138
  """A block that has a conv layer at shortcut.

  Note that from stage 3,
  the second conv layer at main path is with strides=(2, 2)
  And the shortcut should have strides=(2, 2) as well
139
140
141
142
143
144
145
146

  Args:
    input_tensor: input tensor
    kernel_size: default 3, the kernel size of middle conv layer at main path
    filters: list of integers, the filters of 3 conv layer at main path
    stage: integer, current stage label, used for generating layer names
    block: 'a','b'..., current block label, used for generating layer names
    strides: Strides for the second conv layer in the block.
Zongwei Zhou's avatar
Zongwei Zhou committed
147
    use_l2_regularizer: whether to use L2 regularizer on Conv layer.
148
149
150

  Returns:
    Output tensor for the block.
151
152
153
154
155
156
157
158
159
  """
  filters1, filters2, filters3 = filters
  if backend.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

Zongwei Zhou's avatar
Zongwei Zhou committed
160
161
162
163
164
165
166
167
168
169
170
171
172
  x = layers.Conv2D(
      filters1, (1, 1),
      use_bias=False,
      kernel_initializer='he_normal',
      kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      name=conv_name_base + '2a')(
          input_tensor)
  x = layers.BatchNormalization(
      axis=bn_axis,
      momentum=BATCH_NORM_DECAY,
      epsilon=BATCH_NORM_EPSILON,
      name=bn_name_base + '2a')(
          x)
173
174
  x = layers.Activation('relu')(x)

Zongwei Zhou's avatar
Zongwei Zhou committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
  x = layers.Conv2D(
      filters2,
      kernel_size,
      strides=strides,
      padding='same',
      use_bias=False,
      kernel_initializer='he_normal',
      kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      name=conv_name_base + '2b')(
          x)
  x = layers.BatchNormalization(
      axis=bn_axis,
      momentum=BATCH_NORM_DECAY,
      epsilon=BATCH_NORM_EPSILON,
      name=bn_name_base + '2b')(
          x)
191
192
  x = layers.Activation('relu')(x)

Zongwei Zhou's avatar
Zongwei Zhou committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
  x = layers.Conv2D(
      filters3, (1, 1),
      use_bias=False,
      kernel_initializer='he_normal',
      kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      name=conv_name_base + '2c')(
          x)
  x = layers.BatchNormalization(
      axis=bn_axis,
      momentum=BATCH_NORM_DECAY,
      epsilon=BATCH_NORM_EPSILON,
      name=bn_name_base + '2c')(
          x)

  shortcut = layers.Conv2D(
      filters3, (1, 1),
      strides=strides,
      use_bias=False,
      kernel_initializer='he_normal',
      kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      name=conv_name_base + '1')(
          input_tensor)
  shortcut = layers.BatchNormalization(
      axis=bn_axis,
      momentum=BATCH_NORM_DECAY,
      epsilon=BATCH_NORM_EPSILON,
      name=bn_name_base + '1')(
          shortcut)
221
222
223
224
225
226

  x = layers.add([x, shortcut])
  x = layers.Activation('relu')(x)
  return x


Zongwei Zhou's avatar
Zongwei Zhou committed
227
228
def resnet50(num_classes,
             batch_size=None,
Hongkun Yu's avatar
Hongkun Yu committed
229
230
             use_l2_regularizer=True,
             rescale_inputs=False):
231
232
233
234
  """Instantiates the ResNet50 architecture.

  Args:
    num_classes: `int` number of classes for image classification.
235
    batch_size: Size of the batches for each step.
Zongwei Zhou's avatar
Zongwei Zhou committed
236
    use_l2_regularizer: whether to use L2 regularizer on Conv/Dense layer.
Hongkun Yu's avatar
Hongkun Yu committed
237
    rescale_inputs: whether to rescale inputs from 0 to 1.
238
239
240
241

  Returns:
      A Keras model instance.
  """
242
  input_shape = (224, 224, 3)
243
  img_input = layers.Input(shape=input_shape, batch_size=batch_size)
Hongkun Yu's avatar
Hongkun Yu committed
244
245
246
247
248
249
250
251
252
253
254
255
  if rescale_inputs:
    # Hub image modules expect inputs in the range [0, 1]. This rescales these
    # inputs to the range expected by the trained model.
    x = layers.Lambda(
        lambda x: x * 255.0 - backend.constant(
            imagenet_preprocessing.CHANNEL_MEANS,
            shape=[1, 1, 3],
            dtype=x.dtype),
        name='rescale')(
            img_input)
  else:
    x = img_input
256

257
  if backend.image_data_format() == 'channels_first':
Zongwei Zhou's avatar
Zongwei Zhou committed
258
259
    x = layers.Lambda(
        lambda x: backend.permute_dimensions(x, (0, 3, 1, 2)),
Hongkun Yu's avatar
Hongkun Yu committed
260
        name='transpose')(x)
261
    bn_axis = 1
262
  else:  # channels_last
263
264
    bn_axis = 3

265
  x = layers.ZeroPadding2D(padding=(3, 3), name='conv1_pad')(x)
Zongwei Zhou's avatar
Zongwei Zhou committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
  x = layers.Conv2D(
      64, (7, 7),
      strides=(2, 2),
      padding='valid',
      use_bias=False,
      kernel_initializer='he_normal',
      kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      name='conv1')(
          x)
  x = layers.BatchNormalization(
      axis=bn_axis,
      momentum=BATCH_NORM_DECAY,
      epsilon=BATCH_NORM_EPSILON,
      name='bn_conv1')(
          x)
281
  x = layers.Activation('relu')(x)
282
  x = layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)
283

Zongwei Zhou's avatar
Zongwei Zhou committed
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
  x = conv_block(
      x,
      3, [64, 64, 256],
      stage=2,
      block='a',
      strides=(1, 1),
      use_l2_regularizer=use_l2_regularizer)
  x = identity_block(
      x,
      3, [64, 64, 256],
      stage=2,
      block='b',
      use_l2_regularizer=use_l2_regularizer)
  x = identity_block(
      x,
      3, [64, 64, 256],
      stage=2,
      block='c',
      use_l2_regularizer=use_l2_regularizer)

  x = conv_block(
      x,
      3, [128, 128, 512],
      stage=3,
      block='a',
      use_l2_regularizer=use_l2_regularizer)
  x = identity_block(
      x,
      3, [128, 128, 512],
      stage=3,
      block='b',
      use_l2_regularizer=use_l2_regularizer)
  x = identity_block(
      x,
      3, [128, 128, 512],
      stage=3,
      block='c',
      use_l2_regularizer=use_l2_regularizer)
  x = identity_block(
      x,
      3, [128, 128, 512],
      stage=3,
      block='d',
      use_l2_regularizer=use_l2_regularizer)

  x = conv_block(
      x,
      3, [256, 256, 1024],
      stage=4,
      block='a',
      use_l2_regularizer=use_l2_regularizer)
  x = identity_block(
      x,
      3, [256, 256, 1024],
      stage=4,
      block='b',
      use_l2_regularizer=use_l2_regularizer)
  x = identity_block(
      x,
      3, [256, 256, 1024],
      stage=4,
      block='c',
      use_l2_regularizer=use_l2_regularizer)
  x = identity_block(
      x,
      3, [256, 256, 1024],
      stage=4,
      block='d',
      use_l2_regularizer=use_l2_regularizer)
  x = identity_block(
      x,
      3, [256, 256, 1024],
      stage=4,
      block='e',
      use_l2_regularizer=use_l2_regularizer)
  x = identity_block(
      x,
      3, [256, 256, 1024],
      stage=4,
      block='f',
      use_l2_regularizer=use_l2_regularizer)

  x = conv_block(
      x,
      3, [512, 512, 2048],
      stage=5,
      block='a',
      use_l2_regularizer=use_l2_regularizer)
  x = identity_block(
      x,
      3, [512, 512, 2048],
      stage=5,
      block='b',
      use_l2_regularizer=use_l2_regularizer)
  x = identity_block(
      x,
      3, [512, 512, 2048],
      stage=5,
      block='c',
      use_l2_regularizer=use_l2_regularizer)
384

385
386
  rm_axes = [1, 2] if backend.image_data_format() == 'channels_last' else [2, 3]
  x = layers.Lambda(lambda x: backend.mean(x, rm_axes), name='reduce_mean')(x)
387
  x = layers.Dense(
Reed's avatar
Reed committed
388
      num_classes,
389
      kernel_initializer=initializers.RandomNormal(stddev=0.01),
Zongwei Zhou's avatar
Zongwei Zhou committed
390
391
392
393
      kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      bias_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      name='fc1000')(
          x)
394

395
396
397
  # A softmax that is followed by the model loss must be done cannot be done
  # in float16 due to numeric issues. So we pass dtype=float32.
  x = layers.Activation('softmax', dtype='float32')(x)
398
399
400

  # Create model.
  return models.Model(img_input, x, name='resnet50')