model_builder.py 28.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""A function to build a DetectionModel from configuration."""
17

18
import functools
19

20
21
22
23
24
25
26
27
28
from object_detection.builders import anchor_generator_builder
from object_detection.builders import box_coder_builder
from object_detection.builders import box_predictor_builder
from object_detection.builders import hyperparams_builder
from object_detection.builders import image_resizer_builder
from object_detection.builders import losses_builder
from object_detection.builders import matcher_builder
from object_detection.builders import post_processing_builder
from object_detection.builders import region_similarity_calculator_builder as sim_calc
29
from object_detection.core import balanced_positive_negative_sampler as sampler
30
from object_detection.core import post_processing
31
from object_detection.core import target_assigner
32
33
34
35
from object_detection.meta_architectures import faster_rcnn_meta_arch
from object_detection.meta_architectures import rfcn_meta_arch
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.models import faster_rcnn_inception_resnet_v2_feature_extractor as frcnn_inc_res
36
from object_detection.models import faster_rcnn_inception_resnet_v2_keras_feature_extractor as frcnn_inc_res_keras
37
38
from object_detection.models import faster_rcnn_inception_v2_feature_extractor as frcnn_inc_v2
from object_detection.models import faster_rcnn_nas_feature_extractor as frcnn_nas
39
from object_detection.models import faster_rcnn_pnas_feature_extractor as frcnn_pnas
40
from object_detection.models import faster_rcnn_resnet_v1_feature_extractor as frcnn_resnet_v1
41
from object_detection.models import ssd_resnet_v1_fpn_feature_extractor as ssd_resnet_v1_fpn
42
from object_detection.models import ssd_resnet_v1_fpn_keras_feature_extractor as ssd_resnet_v1_fpn_keras
43
from object_detection.models import ssd_resnet_v1_ppn_feature_extractor as ssd_resnet_v1_ppn
44
from object_detection.models.embedded_ssd_mobilenet_v1_feature_extractor import EmbeddedSSDMobileNetV1FeatureExtractor
45
from object_detection.models.ssd_inception_v2_feature_extractor import SSDInceptionV2FeatureExtractor
46
from object_detection.models.ssd_inception_v3_feature_extractor import SSDInceptionV3FeatureExtractor
47
from object_detection.models.ssd_mobilenet_v1_feature_extractor import SSDMobileNetV1FeatureExtractor
48
from object_detection.models.ssd_mobilenet_v1_fpn_feature_extractor import SSDMobileNetV1FpnFeatureExtractor
49
from object_detection.models.ssd_mobilenet_v1_fpn_keras_feature_extractor import SSDMobileNetV1FpnKerasFeatureExtractor
50
from object_detection.models.ssd_mobilenet_v1_keras_feature_extractor import SSDMobileNetV1KerasFeatureExtractor
51
from object_detection.models.ssd_mobilenet_v1_ppn_feature_extractor import SSDMobileNetV1PpnFeatureExtractor
52
from object_detection.models.ssd_mobilenet_v2_feature_extractor import SSDMobileNetV2FeatureExtractor
53
from object_detection.models.ssd_mobilenet_v2_fpn_feature_extractor import SSDMobileNetV2FpnFeatureExtractor
54
from object_detection.models.ssd_mobilenet_v2_fpn_keras_feature_extractor import SSDMobileNetV2FpnKerasFeatureExtractor
55
from object_detection.models.ssd_mobilenet_v2_keras_feature_extractor import SSDMobileNetV2KerasFeatureExtractor
56
57
from object_detection.models.ssd_mobilenet_v3_feature_extractor import SSDMobileNetV3LargeFeatureExtractor
from object_detection.models.ssd_mobilenet_v3_feature_extractor import SSDMobileNetV3SmallFeatureExtractor
58
from object_detection.models.ssd_pnasnet_feature_extractor import SSDPNASNetFeatureExtractor
59
from object_detection.predictors import rfcn_box_predictor
60
from object_detection.predictors import rfcn_keras_box_predictor
61
from object_detection.predictors.heads import mask_head
62
from object_detection.protos import model_pb2
63
from object_detection.utils import ops
64
65
66
67

# A map of names to SSD feature extractors.
SSD_FEATURE_EXTRACTOR_CLASS_MAP = {
    'ssd_inception_v2': SSDInceptionV2FeatureExtractor,
68
    'ssd_inception_v3': SSDInceptionV3FeatureExtractor,
69
    'ssd_mobilenet_v1': SSDMobileNetV1FeatureExtractor,
70
71
    'ssd_mobilenet_v1_fpn': SSDMobileNetV1FpnFeatureExtractor,
    'ssd_mobilenet_v1_ppn': SSDMobileNetV1PpnFeatureExtractor,
72
    'ssd_mobilenet_v2': SSDMobileNetV2FeatureExtractor,
73
    'ssd_mobilenet_v2_fpn': SSDMobileNetV2FpnFeatureExtractor,
74
75
    'ssd_mobilenet_v3_large': SSDMobileNetV3LargeFeatureExtractor,
    'ssd_mobilenet_v3_small': SSDMobileNetV3SmallFeatureExtractor,
76
77
78
    'ssd_resnet50_v1_fpn': ssd_resnet_v1_fpn.SSDResnet50V1FpnFeatureExtractor,
    'ssd_resnet101_v1_fpn': ssd_resnet_v1_fpn.SSDResnet101V1FpnFeatureExtractor,
    'ssd_resnet152_v1_fpn': ssd_resnet_v1_fpn.SSDResnet152V1FpnFeatureExtractor,
79
80
81
82
83
    'ssd_resnet50_v1_ppn': ssd_resnet_v1_ppn.SSDResnet50V1PpnFeatureExtractor,
    'ssd_resnet101_v1_ppn':
        ssd_resnet_v1_ppn.SSDResnet101V1PpnFeatureExtractor,
    'ssd_resnet152_v1_ppn':
        ssd_resnet_v1_ppn.SSDResnet152V1PpnFeatureExtractor,
84
    'embedded_ssd_mobilenet_v1': EmbeddedSSDMobileNetV1FeatureExtractor,
85
86
87
88
    'ssd_pnasnet': SSDPNASNetFeatureExtractor,
}

SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP = {
89
    'ssd_mobilenet_v1_keras': SSDMobileNetV1KerasFeatureExtractor,
90
91
92
    'ssd_mobilenet_v1_fpn_keras': SSDMobileNetV1FpnKerasFeatureExtractor,
    'ssd_mobilenet_v2_keras': SSDMobileNetV2KerasFeatureExtractor,
    'ssd_mobilenet_v2_fpn_keras': SSDMobileNetV2FpnKerasFeatureExtractor,
93
94
95
96
97
98
    'ssd_resnet50_v1_fpn_keras':
        ssd_resnet_v1_fpn_keras.SSDResNet50V1FpnKerasFeatureExtractor,
    'ssd_resnet101_v1_fpn_keras':
        ssd_resnet_v1_fpn_keras.SSDResNet101V1FpnKerasFeatureExtractor,
    'ssd_resnet152_v1_fpn_keras':
        ssd_resnet_v1_fpn_keras.SSDResNet152V1FpnKerasFeatureExtractor,
99
100
101
102
}

# A map of names to Faster R-CNN feature extractors.
FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP = {
Vivek Rathod's avatar
Vivek Rathod committed
103
104
    'faster_rcnn_nas':
    frcnn_nas.FasterRCNNNASFeatureExtractor,
105
106
    'faster_rcnn_pnas':
    frcnn_pnas.FasterRCNNPNASFeatureExtractor,
107
108
109
110
    'faster_rcnn_inception_resnet_v2':
    frcnn_inc_res.FasterRCNNInceptionResnetV2FeatureExtractor,
    'faster_rcnn_inception_v2':
    frcnn_inc_v2.FasterRCNNInceptionV2FeatureExtractor,
111
112
113
114
115
116
117
118
    'faster_rcnn_resnet50':
    frcnn_resnet_v1.FasterRCNNResnet50FeatureExtractor,
    'faster_rcnn_resnet101':
    frcnn_resnet_v1.FasterRCNNResnet101FeatureExtractor,
    'faster_rcnn_resnet152':
    frcnn_resnet_v1.FasterRCNNResnet152FeatureExtractor,
}

119
120
121
122
123
FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP = {
    'faster_rcnn_inception_resnet_v2_keras':
    frcnn_inc_res_keras.FasterRCNNInceptionResnetV2KerasFeatureExtractor,
}

124

125
126
127
def _build_ssd_feature_extractor(feature_extractor_config,
                                 is_training,
                                 freeze_batchnorm,
128
                                 reuse_weights=None):
129
130
131
132
133
  """Builds a ssd_meta_arch.SSDFeatureExtractor based on config.

  Args:
    feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto.
    is_training: True if this feature extractor is being built for training.
134
135
136
137
    freeze_batchnorm: Whether to freeze batch norm parameters during
      training or not. When training with a small batch size (e.g. 1), it is
      desirable to freeze batch norm update and use pretrained batch norm
      params.
138
139
140
141
142
143
144
145
146
    reuse_weights: if the feature extractor should reuse weights.

  Returns:
    ssd_meta_arch.SSDFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
  feature_type = feature_extractor_config.type
147
  is_keras_extractor = feature_type in SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP
148
149
  depth_multiplier = feature_extractor_config.depth_multiplier
  min_depth = feature_extractor_config.min_depth
150
  pad_to_multiple = feature_extractor_config.pad_to_multiple
151
  use_explicit_padding = feature_extractor_config.use_explicit_padding
152
  use_depthwise = feature_extractor_config.use_depthwise
153
154
155
156
157
158
159

  if is_keras_extractor:
    conv_hyperparams = hyperparams_builder.KerasLayerHyperparams(
        feature_extractor_config.conv_hyperparams)
  else:
    conv_hyperparams = hyperparams_builder.build(
        feature_extractor_config.conv_hyperparams, is_training)
160
161
  override_base_feature_extractor_hyperparams = (
      feature_extractor_config.override_base_feature_extractor_hyperparams)
162

163
164
  if (feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP) and (
      not is_keras_extractor):
165
166
    raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type))

167
168
169
170
171
  if is_keras_extractor:
    feature_extractor_class = SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP[
        feature_type]
  else:
    feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type]
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
  kwargs = {
      'is_training':
          is_training,
      'depth_multiplier':
          depth_multiplier,
      'min_depth':
          min_depth,
      'pad_to_multiple':
          pad_to_multiple,
      'use_explicit_padding':
          use_explicit_padding,
      'use_depthwise':
          use_depthwise,
      'override_base_feature_extractor_hyperparams':
          override_base_feature_extractor_hyperparams
  }

189
190
191
192
193
194
  if feature_extractor_config.HasField('replace_preprocessor_with_placeholder'):
    kwargs.update({
        'replace_preprocessor_with_placeholder':
            feature_extractor_config.replace_preprocessor_with_placeholder
    })

pkulzc's avatar
pkulzc committed
195
196
197
  if feature_extractor_config.HasField('num_layers'):
    kwargs.update({'num_layers': feature_extractor_config.num_layers})

198
199
200
201
202
203
204
205
206
207
208
209
  if is_keras_extractor:
    kwargs.update({
        'conv_hyperparams': conv_hyperparams,
        'inplace_batchnorm_update': False,
        'freeze_batchnorm': freeze_batchnorm
    })
  else:
    kwargs.update({
        'conv_hyperparams_fn': conv_hyperparams,
        'reuse_weights': reuse_weights,
    })

210
211
  if feature_extractor_config.HasField('fpn'):
    kwargs.update({
212
213
214
215
216
217
        'fpn_min_level':
            feature_extractor_config.fpn.min_level,
        'fpn_max_level':
            feature_extractor_config.fpn.max_level,
        'additional_layer_depth':
            feature_extractor_config.fpn.additional_layer_depth,
218
219
    })

220

221
  return feature_extractor_class(**kwargs)
222
223


224
def _build_ssd_model(ssd_config, is_training, add_summaries):
225
226
227
228
229
230
  """Builds an SSD detection model based on the model config.

  Args:
    ssd_config: A ssd.proto object containing the config for the desired
      SSDMetaArch.
    is_training: True if this model is being built for training purposes.
231
    add_summaries: Whether to add tf summaries in the model.
232
233
  Returns:
    SSDMetaArch based on the config.
234

235
236
237
238
239
240
241
  Raises:
    ValueError: If ssd_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
  num_classes = ssd_config.num_classes

  # Feature extractor
242
  feature_extractor = _build_ssd_feature_extractor(
243
      feature_extractor_config=ssd_config.feature_extractor,
244
      freeze_batchnorm=ssd_config.freeze_batchnorm,
245
      is_training=is_training)
246
247
248
249
250

  box_coder = box_coder_builder.build(ssd_config.box_coder)
  matcher = matcher_builder.build(ssd_config.matcher)
  region_similarity_calculator = sim_calc.build(
      ssd_config.similarity_calculator)
251
  encode_background_as_zeros = ssd_config.encode_background_as_zeros
252
  negative_class_weight = ssd_config.negative_class_weight
253
254
  anchor_generator = anchor_generator_builder.build(
      ssd_config.anchor_generator)
255
256
  if feature_extractor.is_keras_model:
    ssd_box_predictor = box_predictor_builder.build_keras(
257
        hyperparams_fn=hyperparams_builder.KerasLayerHyperparams,
258
259
260
261
262
263
264
265
266
267
268
269
        freeze_batchnorm=ssd_config.freeze_batchnorm,
        inplace_batchnorm_update=False,
        num_predictions_per_location_list=anchor_generator
        .num_anchors_per_location(),
        box_predictor_config=ssd_config.box_predictor,
        is_training=is_training,
        num_classes=num_classes,
        add_background_class=ssd_config.add_background_class)
  else:
    ssd_box_predictor = box_predictor_builder.build(
        hyperparams_builder.build, ssd_config.box_predictor, is_training,
        num_classes, ssd_config.add_background_class)
270
271
272
273
  image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
  non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
      ssd_config.post_processing)
  (classification_loss, localization_loss, classification_weight,
274
275
   localization_weight, hard_example_miner, random_example_sampler,
   expected_loss_weights_fn) = losses_builder.build(ssd_config.loss)
276
  normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches
277
  normalize_loc_loss_by_codesize = ssd_config.normalize_loc_loss_by_codesize
278
279
280
281

  equalization_loss_config = ops.EqualizationLossConfig(
      weight=ssd_config.loss.equalization_loss.weight,
      exclude_prefixes=ssd_config.loss.equalization_loss.exclude_prefixes)
282
283
284
285
286

  target_assigner_instance = target_assigner.TargetAssigner(
      region_similarity_calculator,
      matcher,
      box_coder,
287
      negative_class_weight=negative_class_weight)
288

289
  ssd_meta_arch_fn = ssd_meta_arch.SSDMetaArch
290
  kwargs = {}
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

  return ssd_meta_arch_fn(
      is_training=is_training,
      anchor_generator=anchor_generator,
      box_predictor=ssd_box_predictor,
      box_coder=box_coder,
      feature_extractor=feature_extractor,
      encode_background_as_zeros=encode_background_as_zeros,
      image_resizer_fn=image_resizer_fn,
      non_max_suppression_fn=non_max_suppression_fn,
      score_conversion_fn=score_conversion_fn,
      classification_loss=classification_loss,
      localization_loss=localization_loss,
      classification_loss_weight=classification_weight,
      localization_loss_weight=localization_weight,
      normalize_loss_by_num_matches=normalize_loss_by_num_matches,
      hard_example_miner=hard_example_miner,
308
      target_assigner_instance=target_assigner_instance,
309
      add_summaries=add_summaries,
310
311
      normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
      freeze_batchnorm=ssd_config.freeze_batchnorm,
312
      inplace_batchnorm_update=ssd_config.inplace_batchnorm_update,
313
      add_background_class=ssd_config.add_background_class,
314
      explicit_background_class=ssd_config.explicit_background_class,
315
      random_example_sampler=random_example_sampler,
316
317
318
319
      expected_loss_weights_fn=expected_loss_weights_fn,
      use_confidences_as_targets=ssd_config.use_confidences_as_targets,
      implicit_example_weight=ssd_config.implicit_example_weight,
      equalization_loss_config=equalization_loss_config,
320
321
      return_raw_detections_during_predict=(
          ssd_config.return_raw_detections_during_predict),
322
      **kwargs)
323
324
325


def _build_faster_rcnn_feature_extractor(
326
327
    feature_extractor_config, is_training, reuse_weights=None,
    inplace_batchnorm_update=False):
328
329
330
331
332
333
334
  """Builds a faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Args:
    feature_extractor_config: A FasterRcnnFeatureExtractor proto config from
      faster_rcnn.proto.
    is_training: True if this feature extractor is being built for training.
    reuse_weights: if the feature extractor should reuse weights.
335
336
337
338
339
    inplace_batchnorm_update: Whether to update batch_norm inplace during
      training. This is required for batch norm to work correctly on TPUs. When
      this is false, user must add a control dependency on
      tf.GraphKeys.UPDATE_OPS for train/loss op in order to update the batch
      norm moving average parameters.
340
341
342
343
344
345
346

  Returns:
    faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
347
348
  if inplace_batchnorm_update:
    raise ValueError('inplace batchnorm updates not supported.')
349
350
351
  feature_type = feature_extractor_config.type
  first_stage_features_stride = (
      feature_extractor_config.first_stage_features_stride)
352
  batch_norm_trainable = feature_extractor_config.batch_norm_trainable
353
354
355
356
357
358
359

  if feature_type not in FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
        feature_type))
  feature_extractor_class = FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP[
      feature_type]
  return feature_extractor_class(
360
      is_training, first_stage_features_stride,
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
      batch_norm_trainable, reuse_weights=reuse_weights)


def _build_faster_rcnn_keras_feature_extractor(
    feature_extractor_config, is_training,
    inplace_batchnorm_update=False):
  """Builds a faster_rcnn_meta_arch.FasterRCNNKerasFeatureExtractor from config.

  Args:
    feature_extractor_config: A FasterRcnnFeatureExtractor proto config from
      faster_rcnn.proto.
    is_training: True if this feature extractor is being built for training.
    inplace_batchnorm_update: Whether to update batch_norm inplace during
      training. This is required for batch norm to work correctly on TPUs. When
      this is false, user must add a control dependency on
      tf.GraphKeys.UPDATE_OPS for train/loss op in order to update the batch
      norm moving average parameters.

  Returns:
    faster_rcnn_meta_arch.FasterRCNNKerasFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
  if inplace_batchnorm_update:
    raise ValueError('inplace batchnorm updates not supported.')
  feature_type = feature_extractor_config.type
  first_stage_features_stride = (
      feature_extractor_config.first_stage_features_stride)
  batch_norm_trainable = feature_extractor_config.batch_norm_trainable

  if feature_type not in FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
        feature_type))
  feature_extractor_class = FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP[
      feature_type]
  return feature_extractor_class(
      is_training, first_stage_features_stride,
      batch_norm_trainable)
400
401


402
def _build_faster_rcnn_model(frcnn_config, is_training, add_summaries):
403
404
405
406
407
408
409
  """Builds a Faster R-CNN or R-FCN detection model based on the model config.

  Builds R-FCN model if the second_stage_box_predictor in the config is of type
  `rfcn_box_predictor` else builds a Faster R-CNN model.

  Args:
    frcnn_config: A faster_rcnn.proto object containing the config for the
410
      desired FasterRCNNMetaArch or RFCNMetaArch.
411
    is_training: True if this model is being built for training purposes.
412
    add_summaries: Whether to add tf summaries in the model.
413
414
415

  Returns:
    FasterRCNNMetaArch based on the config.
416

417
418
419
420
421
422
423
  Raises:
    ValueError: If frcnn_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
  num_classes = frcnn_config.num_classes
  image_resizer_fn = image_resizer_builder.build(frcnn_config.image_resizer)

424
425
426
427
428
429
430
431
432
433
434
  is_keras = (frcnn_config.feature_extractor.type in
              FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP)

  if is_keras:
    feature_extractor = _build_faster_rcnn_keras_feature_extractor(
        frcnn_config.feature_extractor, is_training,
        inplace_batchnorm_update=frcnn_config.inplace_batchnorm_update)
  else:
    feature_extractor = _build_faster_rcnn_feature_extractor(
        frcnn_config.feature_extractor, is_training,
        inplace_batchnorm_update=frcnn_config.inplace_batchnorm_update)
435

436
  number_of_stages = frcnn_config.number_of_stages
437
438
439
  first_stage_anchor_generator = anchor_generator_builder.build(
      frcnn_config.first_stage_anchor_generator)

440
441
442
443
  first_stage_target_assigner = target_assigner.create_target_assigner(
      'FasterRCNN',
      'proposal',
      use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher)
444
  first_stage_atrous_rate = frcnn_config.first_stage_atrous_rate
445
446
447
448
449
450
451
  if is_keras:
    first_stage_box_predictor_arg_scope_fn = (
        hyperparams_builder.KerasLayerHyperparams(
            frcnn_config.first_stage_box_predictor_conv_hyperparams))
  else:
    first_stage_box_predictor_arg_scope_fn = hyperparams_builder.build(
        frcnn_config.first_stage_box_predictor_conv_hyperparams, is_training)
452
453
454
455
  first_stage_box_predictor_kernel_size = (
      frcnn_config.first_stage_box_predictor_kernel_size)
  first_stage_box_predictor_depth = frcnn_config.first_stage_box_predictor_depth
  first_stage_minibatch_size = frcnn_config.first_stage_minibatch_size
456
457
  use_static_shapes = frcnn_config.use_static_shapes and (
      frcnn_config.use_static_shapes_for_eval or is_training)
458
459
  first_stage_sampler = sampler.BalancedPositiveNegativeSampler(
      positive_fraction=frcnn_config.first_stage_positive_balance_fraction,
460
461
      is_static=(frcnn_config.use_static_balanced_label_sampler and
                 use_static_shapes))
462
  first_stage_max_proposals = frcnn_config.first_stage_max_proposals
463
464
465
466
467
468
469
470
471
472
473
474
475
  if (frcnn_config.first_stage_nms_iou_threshold < 0 or
      frcnn_config.first_stage_nms_iou_threshold > 1.0):
    raise ValueError('iou_threshold not in [0, 1.0].')
  if (is_training and frcnn_config.second_stage_batch_size >
      first_stage_max_proposals):
    raise ValueError('second_stage_batch_size should be no greater than '
                     'first_stage_max_proposals.')
  first_stage_non_max_suppression_fn = functools.partial(
      post_processing.batch_multiclass_non_max_suppression,
      score_thresh=frcnn_config.first_stage_nms_score_threshold,
      iou_thresh=frcnn_config.first_stage_nms_iou_threshold,
      max_size_per_class=frcnn_config.first_stage_max_proposals,
      max_total_size=frcnn_config.first_stage_max_proposals,
Pooya Davoodi's avatar
Pooya Davoodi committed
476
      use_static_shapes=use_static_shapes,
477
      use_partitioned_nms=frcnn_config.use_partitioned_nms_in_first_stage,
Pooya Davoodi's avatar
Pooya Davoodi committed
478
      use_combined_nms=frcnn_config.use_combined_nms_in_first_stage)
479
480
481
482
483
484
485
486
  first_stage_loc_loss_weight = (
      frcnn_config.first_stage_localization_loss_weight)
  first_stage_obj_loss_weight = frcnn_config.first_stage_objectness_loss_weight

  initial_crop_size = frcnn_config.initial_crop_size
  maxpool_kernel_size = frcnn_config.maxpool_kernel_size
  maxpool_stride = frcnn_config.maxpool_stride

487
488
489
490
  second_stage_target_assigner = target_assigner.create_target_assigner(
      'FasterRCNN',
      'detection',
      use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher)
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
  if is_keras:
    second_stage_box_predictor = box_predictor_builder.build_keras(
        hyperparams_builder.KerasLayerHyperparams,
        freeze_batchnorm=False,
        inplace_batchnorm_update=False,
        num_predictions_per_location_list=[1],
        box_predictor_config=frcnn_config.second_stage_box_predictor,
        is_training=is_training,
        num_classes=num_classes)
  else:
    second_stage_box_predictor = box_predictor_builder.build(
        hyperparams_builder.build,
        frcnn_config.second_stage_box_predictor,
        is_training=is_training,
        num_classes=num_classes)
506
  second_stage_batch_size = frcnn_config.second_stage_batch_size
507
508
  second_stage_sampler = sampler.BalancedPositiveNegativeSampler(
      positive_fraction=frcnn_config.second_stage_balance_fraction,
509
510
      is_static=(frcnn_config.use_static_balanced_label_sampler and
                 use_static_shapes))
511
512
513
514
  (second_stage_non_max_suppression_fn, second_stage_score_conversion_fn
  ) = post_processing_builder.build(frcnn_config.second_stage_post_processing)
  second_stage_localization_loss_weight = (
      frcnn_config.second_stage_localization_loss_weight)
515
516
517
  second_stage_classification_loss = (
      losses_builder.build_faster_rcnn_classification_loss(
          frcnn_config.second_stage_classification_loss))
518
519
  second_stage_classification_loss_weight = (
      frcnn_config.second_stage_classification_loss_weight)
520
521
  second_stage_mask_prediction_loss_weight = (
      frcnn_config.second_stage_mask_prediction_loss_weight)
522
523
524
525
526
527
528
529

  hard_example_miner = None
  if frcnn_config.HasField('hard_example_miner'):
    hard_example_miner = losses_builder.build_hard_example_miner(
        frcnn_config.hard_example_miner,
        second_stage_classification_loss_weight,
        second_stage_localization_loss_weight)

530
531
532
  crop_and_resize_fn = (
      ops.matmul_crop_and_resize if frcnn_config.use_matmul_crop_and_resize
      else ops.native_crop_and_resize)
533
534
  clip_anchors_to_image = (
      frcnn_config.clip_anchors_to_image)
535

536
537
538
539
540
  common_kwargs = {
      'is_training': is_training,
      'num_classes': num_classes,
      'image_resizer_fn': image_resizer_fn,
      'feature_extractor': feature_extractor,
541
      'number_of_stages': number_of_stages,
542
      'first_stage_anchor_generator': first_stage_anchor_generator,
543
      'first_stage_target_assigner': first_stage_target_assigner,
544
      'first_stage_atrous_rate': first_stage_atrous_rate,
545
546
      'first_stage_box_predictor_arg_scope_fn':
      first_stage_box_predictor_arg_scope_fn,
547
548
549
550
      'first_stage_box_predictor_kernel_size':
      first_stage_box_predictor_kernel_size,
      'first_stage_box_predictor_depth': first_stage_box_predictor_depth,
      'first_stage_minibatch_size': first_stage_minibatch_size,
551
      'first_stage_sampler': first_stage_sampler,
552
      'first_stage_non_max_suppression_fn': first_stage_non_max_suppression_fn,
553
554
555
      'first_stage_max_proposals': first_stage_max_proposals,
      'first_stage_localization_loss_weight': first_stage_loc_loss_weight,
      'first_stage_objectness_loss_weight': first_stage_obj_loss_weight,
556
      'second_stage_target_assigner': second_stage_target_assigner,
557
      'second_stage_batch_size': second_stage_batch_size,
558
      'second_stage_sampler': second_stage_sampler,
559
560
561
562
563
      'second_stage_non_max_suppression_fn':
      second_stage_non_max_suppression_fn,
      'second_stage_score_conversion_fn': second_stage_score_conversion_fn,
      'second_stage_localization_loss_weight':
      second_stage_localization_loss_weight,
564
565
      'second_stage_classification_loss':
      second_stage_classification_loss,
566
567
      'second_stage_classification_loss_weight':
      second_stage_classification_loss_weight,
568
      'hard_example_miner': hard_example_miner,
569
      'add_summaries': add_summaries,
570
571
572
      'crop_and_resize_fn': crop_and_resize_fn,
      'clip_anchors_to_image': clip_anchors_to_image,
      'use_static_shapes': use_static_shapes,
573
574
575
      'resize_masks': frcnn_config.resize_masks,
      'return_raw_detections_during_predict': (
          frcnn_config.return_raw_detections_during_predict)
576
  }
577

578
579
580
581
  if (isinstance(second_stage_box_predictor,
                 rfcn_box_predictor.RfcnBoxPredictor) or
      isinstance(second_stage_box_predictor,
                 rfcn_keras_box_predictor.RfcnKerasBoxPredictor)):
582
583
584
585
586
587
588
589
590
    return rfcn_meta_arch.RFCNMetaArch(
        second_stage_rfcn_box_predictor=second_stage_box_predictor,
        **common_kwargs)
  else:
    return faster_rcnn_meta_arch.FasterRCNNMetaArch(
        initial_crop_size=initial_crop_size,
        maxpool_kernel_size=maxpool_kernel_size,
        maxpool_stride=maxpool_stride,
        second_stage_mask_rcnn_box_predictor=second_stage_box_predictor,
591
592
        second_stage_mask_prediction_loss_weight=(
            second_stage_mask_prediction_loss_weight),
593
        **common_kwargs)
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634

EXPERIMENTAL_META_ARCH_BUILDER_MAP = {
}


def _build_experimental_model(config, is_training, add_summaries=True):
  return EXPERIMENTAL_META_ARCH_BUILDER_MAP[config.name](
      is_training, add_summaries)

META_ARCHITECURE_BUILDER_MAP = {
    'ssd': _build_ssd_model,
    'faster_rcnn': _build_faster_rcnn_model,
    'experimental_model': _build_experimental_model
}


def build(model_config, is_training, add_summaries=True):
  """Builds a DetectionModel based on the model config.

  Args:
    model_config: A model.proto object containing the config for the desired
      DetectionModel.
    is_training: True if this model is being built for training purposes.
    add_summaries: Whether to add tensorflow summaries in the model graph.
  Returns:
    DetectionModel based on the config.

  Raises:
    ValueError: On invalid meta architecture or model.
  """
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise ValueError('model_config not of type model_pb2.DetectionModel.')

  meta_architecture = model_config.WhichOneof('model')

  if meta_architecture not in META_ARCHITECURE_BUILDER_MAP:
    raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
  else:
    build_func = META_ARCHITECURE_BUILDER_MAP[meta_architecture]
    return build_func(getattr(model_config, meta_architecture), is_training,
                      add_summaries)