kernel_attention.py 28.5 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Keras-based kernel attention layer."""

import functools
import math
import tensorflow as tf

21
22
from official.modeling import tf_utils

23
24
25
_NUMERIC_STABLER = 1e-6


Frederick Liu's avatar
Frederick Liu committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
class KernelMask(tf.keras.layers.Layer):
  """Creates kernel attention mask.

    inputs: from_tensor: 2D or 3D Tensor of shape
      [batch_size, from_seq_length, ...].
    mask: a Tensor of shape [batch_size, from_seq_length] which indicates
      which part of the inputs we should not attend.

    Returns:
      float Tensor of shape [batch_size, from_seq_length] that KernelAttention
      takes as mask.
  """

  def call(self, inputs, mask):
    mask = tf.cast(mask, inputs.dtype)
    return mask


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
44
def pad_to_chunk_length(tensor, axis, chunk_length, padding=None):
Avi Dubey's avatar
Avi Dubey committed
45
46
47
48
49
50
51
  """Pads a tensor so that shape[axis] is divisible by chunk_length.

  Args:
    tensor: Input tensor to pad.
    axis: Axis to pad along.
    chunk_length: The output tensor will have shape[axis] divisible by
      chunk_length.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
52
53
54
55
56
    padding: Pad the input tensor across the axis from either left or
      right if padding is set to "left" or "right"; applies no padding
      if padding is set to None. In the latter case, the axis
      dimension of the input tensor must be divisible by the
      chunk_length.
Avi Dubey's avatar
Avi Dubey committed
57
58
59
60

  Returns:
    Padded tensor with shape[axis] divisible by chunk_length.
  """
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
61
62
  if padding is None:
    return tensor
Avi Dubey's avatar
Avi Dubey committed
63
64
65
66
67
68
  shape = tf.shape(tensor)
  rank = tf.rank(tensor)
  if axis < 0:
    axis += rank
  axis_length = shape[axis]
  pad_length = -axis_length % chunk_length
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
69
70
71
72
73
  if padding == "right":
    axis_paddings = [[0, pad_length]]
  elif padding == "left":
    axis_paddings = [[pad_length, 0]]
  else:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
74
75
    raise ValueError(
        "Illegal padding value; must be one of \"left\", \"right\" or None.")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
76
77
78
  paddings = tf.concat(
      [tf.zeros([axis, 2], dtype=tf.int32),
       axis_paddings,
Avi Dubey's avatar
Avi Dubey committed
79
       tf.zeros([rank - axis - 1, 2], dtype=tf.int32)], axis=0)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
80
  return tf.pad(tensor, paddings)
Avi Dubey's avatar
Avi Dubey committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100


def split_tensor_into_chunks(tensor, axis, chunk_length):
  """Reshape tensor along given axis using chunk_length.

  Args:
    tensor: Input tensor.
    axis: Reshape tensor along this axis.
    chunk_length: Split the axis into [axis/chunk_length, chunk_length]

  Returns:
    Reshaped tensor.
  """
  shape = tf.shape(tensor)
  num_chunks = shape[axis] // chunk_length
  new_shape = tf.concat(
      [shape[:axis], [num_chunks, chunk_length], shape[(axis+1):]], axis=0)
  return tf.reshape(tensor, new_shape)


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
101
def causal_windowed_performer_attention(query_matrix,
Avi Dubey's avatar
Avi Dubey committed
102
103
104
105
                                        key_matrix,
                                        value_matrix,
                                        chunk_length,
                                        window_length,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
106
                                        padding=None):
Avi Dubey's avatar
Avi Dubey committed
107
108
  """Applies windowed causal kernel attention with query, key, value tensors.

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
109
110
111
112
113
114
115
116
117
118
119
  We partition the T-length input sequence into N chunks, each of
  chunk_length tokens (thus: T = N * chunk_length). Within each chunk,
  we apply bidirectional (non-causal) Performers’ implicit attention
  and we model relationships between different chunks using
  Performers’ causal attention. We consider windowed causal variant of
  performer, where the current chunk attends only to the window of
  window_length of the most recent chunks.

  Below is an example with T=9, chunk_length=3, window_length=2. In
  this example 1 indicates attention is computed between the pair
  while 0 indicates attention is not computed between the pairs:
Avi Dubey's avatar
Avi Dubey committed
120

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
121
122
123
124
125
126
127
128
129
    111000000
    111000000
    111000000
    111111000
    111111000
    111111000
    000111111
    000111111
    000111111
Avi Dubey's avatar
Avi Dubey committed
130
131

  User can ensure sequence_length is divisible by chunk_length or use
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
132
133
  padding="left"/"right" to pad the sequence length either at the left
  or right respectively and make it divisible by chunk_length.
Avi Dubey's avatar
Avi Dubey committed
134
135
136
137
138
139
140

  Args:
    query_matrix: Kernel query `Tensor` of shape `[B, T, N, dim]`.
    key_matrix: Kernel key `Tensor` of shape `[B, T, N, dim]`.
    value_matrix: Value `Tensor` of shape `[B, T, N, out_dim]`.
    chunk_length: Length of each chunk in tokens.
    window_length: Length of attention window in chunks.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
141
142
143
144
145
    padding: Pad the query, value and key input tensors across the
      axis from either left or right if padding is set to "left" or
      "right"; apply no padding if padding is set to None. In the
      latter case, the axis dimension of the query, value and key
      input tensors must be divisible by the chunk_length.
Avi Dubey's avatar
Avi Dubey committed
146
147
148
149
150
151

  Returns:
    Window causal performer attention of shape `[B, T, N, out_dim]`.
  """
  old_shape = tf.shape(value_matrix)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
152
153
154
  query_matrix = pad_to_chunk_length(query_matrix, -3, chunk_length, padding)
  key_matrix = pad_to_chunk_length(key_matrix, -3, chunk_length, padding)
  value_matrix = pad_to_chunk_length(value_matrix, -3, chunk_length, padding)
Avi Dubey's avatar
Avi Dubey committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

  new_shape = tf.shape(value_matrix)
  chunked_query_matrix = split_tensor_into_chunks(
      query_matrix, -3,
      chunk_length)  # [-1, T//chunk_length, chunk_length, N, dim]
  chunked_key_matrix = split_tensor_into_chunks(
      key_matrix, -3,
      chunk_length)  # [-1, T//chunk_length, chunk_length, N, dim]
  chunked_value_matrix = split_tensor_into_chunks(
      value_matrix, -3,
      chunk_length)  # [-1, T//chunk_length, chunk_length, N, out_dim]

  kp_v = tf.einsum("BNCHD,BNCHO->BNHDO", chunked_key_matrix,
                   chunked_value_matrix)
  kp_v_cumsum = tf.cumsum(kp_v, axis=-4)
  kp_v_winsum = kp_v_cumsum - tf.pad(
      kp_v_cumsum,
      [[0, 0], [window_length, 0], [0, 0], [0, 0], [0, 0]])[:, :-window_length]
  numerator = tf.einsum("BNCHD,BNHDO->BNCHO", chunked_query_matrix, kp_v_winsum)

  k_sum = tf.reduce_sum(chunked_key_matrix, axis=-3)
  k_cumsum = tf.cumsum(k_sum, axis=-3)
  k_winsum = k_cumsum - tf.pad(k_cumsum, [[0, 0], [window_length, 0], [0, 0],
                                          [0, 0]])[:, :-window_length]
  denominator = tf.einsum("BNCHD,BNHD->BNCH", chunked_query_matrix, k_winsum)
  denominator = tf.expand_dims(denominator, -1) + _NUMERIC_STABLER

  attention = numerator / denominator
  attention = tf.reshape(attention, new_shape)

  start = tf.zeros([len(old_shape)], dtype=old_shape.dtype)
  attention = tf.slice(attention, start, old_shape)

  return attention


191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
def create_projection_matrix(m, d, seed=None):
  r"""Constructs the matrix of random projections.

  Constructs a matrix of random orthogonal projections. Each projection vector
  has direction chosen uniformly at random length taken from the
  \chi(d) distribution.).

  Args:
    m: number of random projections.
    d: dimensionality of each random projection.
    seed: random seed used to construct projections. If not, we use the stateful
      api.

  Returns:
    The matrix of random projections of the shape [m, d].
  """
  nb_full_blocks = math.ceil(m / d)
208
209
  block_list = tf.TensorArray(
      tf.float32, size=tf.cast(nb_full_blocks, dtype=tf.int32))
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
  stateful = False
  if seed is None:
    stateful = True
    # dummy seed to make sure the graph compiles though the path is not taken.
    seed = tf.constant([0, 1])
  current_seed = seed
  for i in range(nb_full_blocks):
    if stateful:
      unstructured_block = tf.random.normal((d, d))
    else:
      unstructured_block = tf.random.stateless_normal((d, d), seed=current_seed)
      current_seed = tf.random.stateless_uniform([2],
                                                 seed=current_seed,
                                                 minval=None,
                                                 dtype=tf.int32)
    q, _ = tf.linalg.qr(unstructured_block)
    q = tf.transpose(q)
    block_list = block_list.write(i, q)
  final_matrix = block_list.concat()[:m]
  if stateful is None:
    multiplier = tf.norm(tf.random.normal((m, d)), axis=1)
  else:
    multiplier = tf.norm(
        tf.random.stateless_normal((m, d), seed=current_seed), axis=1)
  return tf.linalg.matmul(tf.linalg.diag(multiplier), final_matrix)


Frederick Liu's avatar
Frederick Liu committed
237
def _generalized_kernel(x, projection_matrix, f, h):
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
  """Generalized kernel in RETHINKING ATTENTION WITH PERFORMERS.

  Args:
    x: The feature being transformed with shape [B, T, N ,H].
    projection_matrix: The matrix with shape [M, H] that we projecct x to, where
      M is the number of projections.
    f: A non-linear function applied on x or projected x.
    h: A muliplier which is a function of x applied after projected and
      transformed. Only applied if projection_matrix is not None.

  Returns:
    Transformed feature.
  """

  if projection_matrix is None:
    return h(x) * f(x)
  else:
    x_projected = tf.einsum("BTNH,MH->BTNM", x, projection_matrix)
    return h(x) * f(x_projected) / tf.math.sqrt(
        tf.cast(tf.shape(projection_matrix)[0], tf.float32))


260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
def expplus(data_orig,
            other_data,
            is_query,
            projection_matrix=None,
            numerical_stabilizer=0.000001,
            normalize_data=True,
            numerical_renormalizer=True,
            extra_renormalize_exp_fun=False):
  """FAVOR++ mechanism from the CRT paper: https://arxiv.org/abs/2205.15317 .

  Args:
    data_orig: data tensor of shape [B,T,H,D] for which random features aree to
      be computed
    other_data: additional tensor of the shape [B,F,H,D] used to collect stats
      to determine the exact instantiation of the random feature mechanism
    is_query: boolean indicating whether <data_orig> tensor is a query tensor
    projection_matrix: tensor of the shape [M,D] encoding random projections for
      random features (M stands for the number of random features)
    numerical_stabilizer: numerical stabilizer for the kernel features
    normalize_data: whether to sqrt-d-normalize queries/keys as in the regular
      attention
    numerical_renormalizer: whether to apply additional renormalization for
      numerical stability
    extra_renormalize_exp_fun: extra renormalizer for the exponential mapping
      applied to construct random features

  Returns:
    Random feature map tensor for the unbiased softmax-kernel estimation.
  """

  data = data_orig
  if projection_matrix is None:
    return data_orig
  projection_matrix = tf.cast(projection_matrix, data.dtype)
  if normalize_data:
    data_normalizer = 1.0 / tf.math.sqrt(
        (tf.math.sqrt(tf.dtypes.cast(data.shape[-1], data.dtype))))
  else:
    data_normalizer = 1.0
    lengths = tf.math.square(data)
    lengths = tf.reduce_sum(lengths, axis=tf.keras.backend.ndim(data) - 1)
    lengths = tf.expand_dims(lengths, axis=tf.keras.backend.ndim(data) - 1)
    lengths = tf.math.sqrt(lengths)
    data /= lengths
  ratio = 1.0 / tf.math.sqrt(
      tf.dtypes.cast(projection_matrix.shape[0], data.dtype))
  data_dash = tf.einsum("blhd,md->blhm", data_normalizer * data,
                        projection_matrix)
  diag_data = tf.math.square(data)
  diag_data = tf.math.reduce_sum(
      diag_data, axis=tf.keras.backend.ndim(data) - 1)
  diag_data = (diag_data / 2.0) * data_normalizer * data_normalizer
  diag_data = tf.expand_dims(diag_data, axis=tf.keras.backend.ndim(data) - 1)

  # Calculating coefficients A, B of the FAVOR++ mechanism:
  _, l, _, _ = tf_utils.get_shape_list(data_orig)

  l = tf.cast(l, dtype=tf.float32)
  first_sum_of_squares = tf.math.square(data)
  first_sum_of_squares = tf.math.reduce_sum(
      first_sum_of_squares, axis=(1, -1), keepdims=True)
  first_sum_of_squares *= (data_normalizer * data_normalizer)
  first_sum_of_squares /= l  # data.shape[1]
  second_sum_of_squares = tf.math.square(other_data)
  second_sum_of_squares = tf.math.reduce_sum(
      second_sum_of_squares, axis=(1, -1), keepdims=True)
  second_sum_of_squares *= (data_normalizer * data_normalizer)
  second_sum_of_squares /= l  #  other_data.shape[1]
  data_sum = tf.math.reduce_sum(data, axis=(1,), keepdims=True)
  other_data_sum = tf.math.reduce_sum(other_data, axis=(1,), keepdims=True)
  d_prod = tf.einsum("blhd,blhd->blh", data_sum, other_data_sum)
  d_prod = tf.expand_dims(d_prod, axis=-1)
  d_prod *= (data_normalizer * data_normalizer)
  d_prod *= (2.0 / (l * l))
  ave = first_sum_of_squares + second_sum_of_squares + d_prod
  dim = projection_matrix.shape[-1]
336
  a_coeff = (1.0 / (4.0 * ave)) * (
337
338
      tf.math.sqrt((2.0 * ave + dim) *
                   (2.0 * ave + dim) + 8.0 * dim * ave) - 2.0 * ave - dim)
339
340
341
342
343
344
  a_coeff = (1.0 - 1.0 / a_coeff) / 8.0
  b_coeff = tf.math.sqrt(1.0 - 4.0 * a_coeff)
  d_coeff = tf.math.pow(1.0 - 4.0 * a_coeff, dim / 4.0)
  a_coeff = tf.stop_gradient(a_coeff)
  b_coeff = tf.stop_gradient(b_coeff)
  d_coeff = tf.stop_gradient(d_coeff)
345
346
347
348
349
350
351
352

  # Calculating diag_omega for the FAVOR++ mechanism:
  diag_omega = tf.math.square(projection_matrix)
  diag_omega = tf.math.reduce_sum(
      diag_omega, axis=tf.keras.backend.ndim(projection_matrix) - 1)
  diag_omega = tf.expand_dims(diag_omega, axis=0)
  diag_omega = tf.expand_dims(diag_omega, axis=0)
  diag_omega = tf.expand_dims(diag_omega, axis=0)
353
  diag_omega = a_coeff * diag_omega
354
355
356
357
358
  #

  if numerical_renormalizer:
    if is_query:
      last_dims_t = (len(data_dash.shape) - 1,)
359
360
      stab = b_coeff * tf.math.reduce_max(
          data_dash, axis=last_dims_t, keepdims=True)
361
    else:
362
      stab = b_coeff * tf.math.reduce_max(data_dash, keepdims=True)
363
364
365
    if extra_renormalize_exp_fun:
      extra_stab = tf.reduce_max(diag_data, axis=1, keepdims=True)
      stab = tf.math.maximum(stab, extra_stab)
366
367
    data_dash = ratio * d_coeff * (
        tf.math.exp(b_coeff * data_dash - stab - diag_data + diag_omega) +
368
369
        numerical_stabilizer)
  else:
370
371
    data_dash = ratio * d_coeff * (
        tf.math.exp(b_coeff * data_dash - diag_data + diag_omega) +
372
373
374
375
376
        numerical_stabilizer)

  return data_dash


377
378
379
380
381
382
383
384
385
# pylint: disable=g-long-lambda
_TRANSFORM_MAP = {
    "elu":
        functools.partial(
            _generalized_kernel,
            f=lambda x: tf.keras.activations.elu(x) + 1,
            h=lambda x: 1),
    "relu":
        functools.partial(
386
387
388
            _generalized_kernel,
            # Improve numerical stability and avoid NaNs in some cases by adding
            # a tiny epsilon.
389
390
            f=lambda x: tf.keras.activations.relu(x) + 1e-3,
            h=lambda x: 1),
391
    "square":
392
        functools.partial(_generalized_kernel, f=tf.math.square, h=lambda x: 1),
393
394
395
396
    "exp":
        functools.partial(
            _generalized_kernel,
            # Avoid exp explosion by shifting.
397
398
399
400
401
            f=lambda x: tf.math.exp(x - tf.math.reduce_max(
                x, axis=[1, 2, 3], keepdims=True)),
            h=lambda x: tf.math.exp(-0.5 * tf.math.reduce_sum(
                tf.math.square(x), axis=-1, keepdims=True)),
        ),
402
403
404
405
    "expmod":
        functools.partial(
            _generalized_kernel,
            # Avoid exp explosion by shifting.
406
407
408
409
410
411
412
            f=lambda x: tf.math.exp(x - tf.math.reduce_max(
                x, axis=[1, 2, 3], keepdims=True)),
            h=lambda x: tf.math.exp(-0.5 * tf.math.sqrt(
                tf.cast(tf.shape(x)[-1], tf.float32))),
        ),
    "identity":
        functools.partial(_generalized_kernel, f=lambda x: x, h=lambda x: 1)
413
414
415
416
417
418
419
420
421
422
423
}
# pylint: enable=g-long-lambda


class KernelAttention(tf.keras.layers.MultiHeadAttention):
  """A variant of efficient transformers which replaces softmax with kernels.

  This module combines ideas from the two following papers:

  Rethinking Attention with Performers
  (https://arxiv.org/abs/2009.14794)
Frederick Liu's avatar
Frederick Liu committed
424
  - exp (Lemma 1, positive), relu
425
  - random/deterministic projection
426
427
428
  Chefs' Random Tables: Non-Trigonometric Random Features
  (https://arxiv.org/abs/2205.15317)
  - expplus (OPRF mechanism)
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451

  Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention
  (https://arxiv.org/abs/2006.16236)
  - elu

  with the theory of approximating angular Performer kernels from go/performer.

  The module enables computing efficient attention in both: long sequence and
  shorter sequence regimes. In the former setting, the attention matrix is never
  explicitly computed and instead its low-rank decomposition obtained with given
  kernel feature maps is leveraged to conduct attention module calculations
  (see: https://arxiv.org/abs/2006.16236). In the latter setting, attention
  matrix is constructed, but kernel features providing dimensionality reduction
  are applied, resulting in more efficient computation of the attention matrix.
  """

  def __init__(self,
               feature_transform="exp",
               num_random_features=256,
               seed=0,
               redraw=False,
               is_short_seq=False,
               begin_kernel=0,
Frederick Liu's avatar
Frederick Liu committed
452
               scale=None,
Jialu Liu's avatar
Jialu Liu committed
453
               scale_by_length=False,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
454
455
               use_causal_windowed=False,
               causal_chunk_length=1,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
456
               causal_window_length=3,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
457
               causal_padding=None,
458
459
460
461
               **kwargs):
    r"""Constructor of KernelAttention.

    Args:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
462
463
464
      feature_transform: A non-linear transform of the keys and queries.
        Possible transforms are "elu", "relu", "square", "exp", "expplus",
        "expmod", "identity".
465
466
467
468
469
470
471
472
473
      num_random_features: Number of random features to be used for projection.
        if num_random_features <= 0, no production is used before transform.
      seed: The seed to begin drawing random features. Once the seed is set, the
        psedo number generation is determinisitc. Users should pass different
        seed for different layers. For multi-worker, each layer will use the
        same projection at each step.
      redraw: Whether to redraw projection every forward pass during training.
        The argument is only effective when num_random_features > 0.
      is_short_seq: boolean predicate indicating whether input data consists of
Jialu Liu's avatar
Jialu Liu committed
474
475
        very short sequences or not; in most cases this should be False (default
        option).
476
477
      begin_kernel: Apply kernel_attention after this sequence id and apply
        softmax attention before this.
Frederick Liu's avatar
Frederick Liu committed
478
479
      scale: The value to scale the dot product as described in `Attention Is
        All You Need`. If None, we use 1/sqrt(dk) as described in the paper.
Jialu Liu's avatar
Jialu Liu committed
480
481
482
483
      scale_by_length: boolean predicate indicating whether additionally scale
        the dot product based on key length. Set as log_512^(n) to stablize
        attention entropy against length. Refer to
        https://kexue.fm/archives/8823 for details.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
484
485
486
487
488
489
490
491
492
493
494
      use_causal_windowed: If true perform windowed causal attention. See
        causal_windowed_performer_attention function docstring for more details.
      causal_chunk_length: Length of each chunk in tokens.
      causal_window_length: Length of attention window in chunks.
      causal_padding: Pad the query, value and key input tensors
        across the axis from either left or right if padding is set to
        "left" or "right"; apply no padding if padding is set to None.
        In the latter case, the axis dimension of the query, value and
        key input tensors must be divisible by the chunk_length.
      **kwargs:
        The same arguments `MultiHeadAttention` layer.
495
    """
Avi Dubey's avatar
Avi Dubey committed
496
497
    if (feature_transform not in _TRANSFORM_MAP and
        feature_transform != "expplus"):
498
499
500
501
502
503
504
505
506
507
508
      raise ValueError("Unsupported feature_transform. The supported "
                       "feature_transform are %s. "
                       "Got '%s'." % (_TRANSFORM_MAP.keys(), feature_transform))
    if num_random_features <= 0 and redraw:
      raise ValueError(
          "There is nothing to redraw when num_random_features <= 0.")
    self._feature_transform = feature_transform
    self._num_random_features = num_random_features
    self._redraw = redraw
    self._is_short_seq = is_short_seq
    self._begin_kernel = begin_kernel
Jialu Liu's avatar
Jialu Liu committed
509
    self._scale_by_length = scale_by_length
510
511
512
513
514
    # We use the seed for two scenarios:
    # 1. inference
    # 2. no redraw
    self._seed = seed
    super().__init__(**kwargs)
Frederick Liu's avatar
Frederick Liu committed
515
516
517
518
    if scale is None:
      self._scale = 1.0 / math.sqrt(float(self._key_dim))
    else:
      self._scale = scale
519
520
521
522
523
    self._projection_matrix = None
    if num_random_features > 0:
      self._projection_matrix = create_projection_matrix(
          self._num_random_features, self._key_dim,
          tf.constant([self._seed, self._seed + 1]))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
524
525
526
527
528
    self.use_causal_windowed = use_causal_windowed
    self.causal_chunk_length = causal_chunk_length
    self.causal_window_length = causal_window_length
    self.causal_padding = causal_padding
    if self.use_causal_windowed and self._is_short_seq:
Avi Dubey's avatar
Avi Dubey committed
529
      raise ValueError(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
530
          "use_causal_windowed and short_seq methods are mutually exclusive")
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554

  def _compute_attention(self,
                         query,
                         key,
                         value,
                         feature_transform,
                         is_short_seq,
                         attention_mask=None,
                         training=False,
                         numeric_stabler=_NUMERIC_STABLER):
    """Applies kernel attention with query, key, value tensors.

    This function defines the computation inside `call` with projected
    multi-head Q, K, V inputs. Users can override this function for customized
    attention implementation.

    Args:
      query: Projected query `Tensor` of shape `[B, T, N, key_dim]`.
      key: Projected key `Tensor` of shape `[B, S, N, key_dim]`.
      value: Projected value `Tensor` of shape `[B, S, N, value_dim]`.
      feature_transform: A non-linear transform of the keys and quries.
      is_short_seq: boolean predicate indicating whether input data consists of
        short or long sequences; usually short sequence is defined as having
        length L <= 1024.
Jialu Liu's avatar
Jialu Liu committed
555
556
557
      attention_mask: a boolean mask of shape `[B, S]`, that prevents attenting
        to masked positions. Note that the mask is only appied to the keys. User
        may want to mask the output if query contains pads.
558
559
560
561
562
563
564
565
      training: Python boolean indicating whether the layer should behave in
        training mode (adding dropout) or in inference mode (doing nothing).
      numeric_stabler: A scalar value added to avoid divide by 0.

    Returns:
      attention_output: Multi-headed outputs of attention computation.
    """
    projection_matrix = None
Avi Dubey's avatar
Avi Dubey committed
566

567
568
569
570
571
572
573
    if self._num_random_features > 0:
      if self._redraw and training:
        projection_matrix = create_projection_matrix(self._num_random_features,
                                                     self._key_dim)
      else:
        projection_matrix = self._projection_matrix

Jialu Liu's avatar
Jialu Liu committed
574
575
576
577
578
579
    if self._scale_by_length:
      scale = tf.math.log(tf.reduce_sum(attention_mask,
                                        axis=-1)) * self._scale / math.log(512)
      scale = tf.reshape(scale, [-1, 1, 1, 1])
    else:
      scale = self._scale
580
581
582
583
    if is_short_seq:
      # Note: Applying scalar multiply at the smaller end of einsum improves
      # XLA performance, but may introduce slight numeric differences in
      # the Transformer attention head.
Jialu Liu's avatar
Jialu Liu committed
584
      query = query * scale
585
586
587
588
    else:
      # Note: we suspect spliting the scale to key, query yields smaller
      # approximation variance when random projection is used.
      # For simplicity, we also split when there's no random projection.
Jialu Liu's avatar
Jialu Liu committed
589
590
      key *= tf.math.sqrt(scale)
      query *= tf.math.sqrt(scale)
Frederick Liu's avatar
Frederick Liu committed
591

592
593
594
595
596
597
    if feature_transform != "expplus":
      key_prime = _TRANSFORM_MAP[feature_transform](key, projection_matrix)
      query_prime = _TRANSFORM_MAP[feature_transform](query, projection_matrix)
    else:
      key_prime = expplus(key, query, False, projection_matrix)
      query_prime = expplus(query, key, True, projection_matrix)
598
599

    if attention_mask is not None:
600
      key_prime = tf.einsum("BSNH,BS->BSNH", key_prime, attention_mask)
601

602
    if is_short_seq:
603
      attention_scores = tf.einsum("BTNH,BSNH->BTSN", query_prime, key_prime)
604
605
      attention_scores = tf.nn.softmax(attention_scores, axis=2)
      attention_output = tf.einsum("BTSN,BSNH->BTNH", attention_scores, value)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
606
607
608
609
610
611
    elif self.use_causal_windowed:
      attention_output = causal_windowed_performer_attention(
          query_prime, key_prime, value,
          chunk_length=self.causal_chunk_length,
          window_length=self.causal_window_length,
          padding=self.causal_padding)
612
    else:
613
      kv = tf.einsum("BSNH,BSND->BNDH", key_prime, value)
614
      denominator = 1.0 / (
615
616
617
618
          tf.einsum("BTNH,BNH->BTN", query_prime,
                    tf.reduce_sum(key_prime, axis=1)) + _NUMERIC_STABLER)
      attention_output = tf.einsum("BTNH,BNDH,BTN->BTND", query_prime, kv,
                                   denominator)
619
    return attention_output
620
621

  def _build_from_signature(self, query, value, key=None):
Rebecca Chen's avatar
Rebecca Chen committed
622
    super()._build_from_signature(query=query, value=value, key=key)  # pytype: disable=attribute-error  # typed-keras
623
624
625
626
627
628
629
630
631
632
    if self._begin_kernel > 0:
      common_kwargs = dict(
          kernel_initializer=self._kernel_initializer,
          bias_initializer=self._bias_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer,
          activity_regularizer=self._activity_regularizer,
          kernel_constraint=self._kernel_constraint,
          bias_constraint=self._bias_constraint)
      self._output_dense_softmax = self._make_output_dense(
633
634
          self._query_shape.rank - 1,
          common_kwargs,
635
636
637
          name="attention_output_softmax")
      self._dropout_softmax = tf.keras.layers.Dropout(rate=self._dropout)

638
  def call(self, query, value, key=None, attention_mask=None, training=False):
Frederick Liu's avatar
Frederick Liu committed
639
640
641
642
643
644
645
    """Compute attention with kernel mechanism.

    Args:
      query: Query `Tensor` of shape `[B, T, dim]`.
      value: Value `Tensor` of shape `[B, S, dim]`.
      key: Optional key `Tensor` of shape `[B, S, dim]`. If not given, will use
        `value` for both `key` and `value`, which is the most common case.
Jialu Liu's avatar
Jialu Liu committed
646
647
648
      attention_mask: a boolean mask of shape `[B, S]`, that prevents attenting
        to masked positions. Note that the mask is only appied to the keys. User
        may want to mask the output if query contains pads.
Frederick Liu's avatar
Frederick Liu committed
649
650
651
652
653
654
      training: Python boolean indicating whether the layer should behave in
        training mode (adding dropout) or in inference mode (doing nothing).

    Returns:
      Multi-headed outputs of attention computation.
    """
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
    if not self._built_from_signature:
      self._build_from_signature(query=query, value=value, key=key)
    if key is None:
      key = value

    #   N = `num_attention_heads`
    #   H = `size_per_head`
    # `query` = [B, T, N ,H]
    query = self._query_dense(query)

    # `key` = [B, S, N, H]
    key = self._key_dense(key)

    # `value` = [B, S, N, D]
    value = self._value_dense(value)

    if self._begin_kernel > 0:
      attention_output_softmax = self._compute_attention(
673
674
          query[:, :self._begin_kernel], key, value, "identity", True,
          attention_mask, training)
675
676
677
678
679
      attention_output_softmax = self._dropout_softmax(attention_output_softmax)
      attention_output_softmax = self._output_dense_softmax(
          attention_output_softmax)

      attention_output_kernel = self._compute_attention(
680
681
          query[:, self._begin_kernel:], key, value, self._feature_transform,
          self._is_short_seq, attention_mask, training)
682
      attention_output_kernel = self._dropout_layer(attention_output_kernel)
683
      attention_output_kernel = self._output_dense(attention_output_kernel)
684
685
686
      attention_output = tf.concat(
          [attention_output_softmax, attention_output_kernel], axis=1)
    else:
Jialu Liu's avatar
Jialu Liu committed
687
688
689
690
      attention_output = self._compute_attention(query, key, value,
                                                 self._feature_transform,
                                                 self._is_short_seq,
                                                 attention_mask, training)
691
692
693
694
695
696
697
698
699
700
701
702
703
704
      # This is actually dropping out entire tokens to attend to, which might
      # seem a bit unusual, but is taken from the original Transformer paper.
      attention_output = self._dropout_layer(attention_output)
      attention_output = self._output_dense(attention_output)
    return attention_output

  def get_config(self):
    config = {
        "feature_transform": self._feature_transform,
        "num_random_features": self._num_random_features,
        "seed": self._seed,
        "redraw": self._redraw,
        "is_short_seq": self._is_short_seq,
        "begin_kernel": self._begin_kernel,
Frederick Liu's avatar
Frederick Liu committed
705
        "scale": self._scale,
706
707
708
    }
    base_config = super().get_config()
    return dict(list(base_config.items()) + list(config.items()))