pix2pix_test.py 5.83 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
"""Tests for pix2pix."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
from nets import pix2pix


class GeneratorTest(tf.test.TestCase):

  def _reduced_default_blocks(self):
    """Returns the default blocks, scaled down to make test run faster."""
    return [pix2pix.Block(b.num_filters // 32, b.decoder_keep_prob)
            for b in pix2pix._default_generator_blocks()]

  def test_output_size_nn_upsample_conv(self):
    batch_size = 2
    height, width = 256, 256
    num_outputs = 4

    images = tf.ones((batch_size, height, width, 3))
    with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()):
      logits, _ = pix2pix.pix2pix_generator(
          images, num_outputs, blocks=self._reduced_default_blocks(),
          upsample_method='nn_upsample_conv')

    with self.test_session() as session:
      session.run(tf.global_variables_initializer())
      np_outputs = session.run(logits)
      self.assertListEqual([batch_size, height, width, num_outputs],
                           list(np_outputs.shape))

  def test_output_size_conv2d_transpose(self):
    batch_size = 2
    height, width = 256, 256
    num_outputs = 4

    images = tf.ones((batch_size, height, width, 3))
    with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()):
      logits, _ = pix2pix.pix2pix_generator(
          images, num_outputs, blocks=self._reduced_default_blocks(),
          upsample_method='conv2d_transpose')

    with self.test_session() as session:
      session.run(tf.global_variables_initializer())
      np_outputs = session.run(logits)
      self.assertListEqual([batch_size, height, width, num_outputs],
                           list(np_outputs.shape))

  def test_block_number_dictates_number_of_layers(self):
    batch_size = 2
    height, width = 256, 256
    num_outputs = 4

    images = tf.ones((batch_size, height, width, 3))
    blocks = [
        pix2pix.Block(64, 0.5),
        pix2pix.Block(128, 0),
    ]
    with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()):
      _, end_points = pix2pix.pix2pix_generator(
          images, num_outputs, blocks)

    num_encoder_layers = 0
    num_decoder_layers = 0
    for end_point in end_points:
      if end_point.startswith('encoder'):
        num_encoder_layers += 1
      elif end_point.startswith('decoder'):
        num_decoder_layers += 1

    self.assertEqual(num_encoder_layers, len(blocks))
    self.assertEqual(num_decoder_layers, len(blocks))


class DiscriminatorTest(tf.test.TestCase):

  def _layer_output_size(self, input_size, kernel_size=4, stride=2, pad=2):
    return (input_size + pad * 2 - kernel_size) // stride + 1

  def test_four_layers(self):
    batch_size = 2
    input_size = 256

    output_size = self._layer_output_size(input_size)
    output_size = self._layer_output_size(output_size)
    output_size = self._layer_output_size(output_size)
    output_size = self._layer_output_size(output_size, stride=1)
    output_size = self._layer_output_size(output_size, stride=1)

    images = tf.ones((batch_size, input_size, input_size, 3))
    with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()):
      logits, end_points = pix2pix.pix2pix_discriminator(
          images, num_filters=[64, 128, 256, 512])
    self.assertListEqual([batch_size, output_size, output_size, 1],
                         logits.shape.as_list())
    self.assertListEqual([batch_size, output_size, output_size, 1],
                         end_points['predictions'].shape.as_list())

  def test_four_layers_no_padding(self):
    batch_size = 2
    input_size = 256

    output_size = self._layer_output_size(input_size, pad=0)
    output_size = self._layer_output_size(output_size, pad=0)
    output_size = self._layer_output_size(output_size, pad=0)
    output_size = self._layer_output_size(output_size, stride=1, pad=0)
    output_size = self._layer_output_size(output_size, stride=1, pad=0)

    images = tf.ones((batch_size, input_size, input_size, 3))
    with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()):
      logits, end_points = pix2pix.pix2pix_discriminator(
          images, num_filters=[64, 128, 256, 512], padding=0)
    self.assertListEqual([batch_size, output_size, output_size, 1],
                         logits.shape.as_list())
    self.assertListEqual([batch_size, output_size, output_size, 1],
                         end_points['predictions'].shape.as_list())

  def test_four_layers_wrog_paddig(self):
    batch_size = 2
    input_size = 256

    images = tf.ones((batch_size, input_size, input_size, 3))
    with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()):
      with self.assertRaises(TypeError):
        pix2pix.pix2pix_discriminator(
            images, num_filters=[64, 128, 256, 512], padding=1.5)

  def test_four_layers_negative_padding(self):
    batch_size = 2
    input_size = 256

    images = tf.ones((batch_size, input_size, input_size, 3))
    with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()):
      with self.assertRaises(ValueError):
        pix2pix.pix2pix_discriminator(
            images, num_filters=[64, 128, 256, 512], padding=-1)

if __name__ == '__main__':
  tf.test.main()