mobilenet_v1_test.py 26.3 KB
Newer Older
andrewghoward's avatar
andrewghoward committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
"""Tests for MobileNet v1."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import tensorflow as tf

from nets import mobilenet_v1

slim = tf.contrib.slim


class MobilenetV1Test(tf.test.TestCase):

  def testBuildClassificationNetwork(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = 1000

    inputs = tf.random_uniform((batch_size, height, width, 3))
    logits, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes)
38
39
    self.assertTrue(logits.op.name.startswith(
        'MobilenetV1/Logits/SpatialSqueeze'))
andrewghoward's avatar
andrewghoward committed
40
41
42
43
44
45
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertTrue('Predictions' in end_points)
    self.assertListEqual(end_points['Predictions'].get_shape().as_list(),
                         [batch_size, num_classes])

46
47
48
49
50
51
52
53
54
55
56
57
  def testBuildPreLogitsNetwork(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = None

    inputs = tf.random_uniform((batch_size, height, width, 3))
    net, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes)
    self.assertTrue(net.op.name.startswith('MobilenetV1/Logits/AvgPool'))
    self.assertListEqual(net.get_shape().as_list(), [batch_size, 1, 1, 1024])
    self.assertFalse('Logits' in end_points)
    self.assertFalse('Predictions' in end_points)

andrewghoward's avatar
andrewghoward committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
  def testBuildBaseNetwork(self):
    batch_size = 5
    height, width = 224, 224

    inputs = tf.random_uniform((batch_size, height, width, 3))
    net, end_points = mobilenet_v1.mobilenet_v1_base(inputs)
    self.assertTrue(net.op.name.startswith('MobilenetV1/Conv2d_13'))
    self.assertListEqual(net.get_shape().as_list(),
                         [batch_size, 7, 7, 1024])
    expected_endpoints = ['Conv2d_0',
                          'Conv2d_1_depthwise', 'Conv2d_1_pointwise',
                          'Conv2d_2_depthwise', 'Conv2d_2_pointwise',
                          'Conv2d_3_depthwise', 'Conv2d_3_pointwise',
                          'Conv2d_4_depthwise', 'Conv2d_4_pointwise',
                          'Conv2d_5_depthwise', 'Conv2d_5_pointwise',
                          'Conv2d_6_depthwise', 'Conv2d_6_pointwise',
                          'Conv2d_7_depthwise', 'Conv2d_7_pointwise',
                          'Conv2d_8_depthwise', 'Conv2d_8_pointwise',
                          'Conv2d_9_depthwise', 'Conv2d_9_pointwise',
                          'Conv2d_10_depthwise', 'Conv2d_10_pointwise',
                          'Conv2d_11_depthwise', 'Conv2d_11_pointwise',
                          'Conv2d_12_depthwise', 'Conv2d_12_pointwise',
                          'Conv2d_13_depthwise', 'Conv2d_13_pointwise']
    self.assertItemsEqual(end_points.keys(), expected_endpoints)

  def testBuildOnlyUptoFinalEndpoint(self):
    batch_size = 5
    height, width = 224, 224
    endpoints = ['Conv2d_0',
                 'Conv2d_1_depthwise', 'Conv2d_1_pointwise',
                 'Conv2d_2_depthwise', 'Conv2d_2_pointwise',
                 'Conv2d_3_depthwise', 'Conv2d_3_pointwise',
                 'Conv2d_4_depthwise', 'Conv2d_4_pointwise',
                 'Conv2d_5_depthwise', 'Conv2d_5_pointwise',
                 'Conv2d_6_depthwise', 'Conv2d_6_pointwise',
                 'Conv2d_7_depthwise', 'Conv2d_7_pointwise',
                 'Conv2d_8_depthwise', 'Conv2d_8_pointwise',
                 'Conv2d_9_depthwise', 'Conv2d_9_pointwise',
                 'Conv2d_10_depthwise', 'Conv2d_10_pointwise',
                 'Conv2d_11_depthwise', 'Conv2d_11_pointwise',
                 'Conv2d_12_depthwise', 'Conv2d_12_pointwise',
                 'Conv2d_13_depthwise', 'Conv2d_13_pointwise']
    for index, endpoint in enumerate(endpoints):
      with tf.Graph().as_default():
        inputs = tf.random_uniform((batch_size, height, width, 3))
        out_tensor, end_points = mobilenet_v1.mobilenet_v1_base(
            inputs, final_endpoint=endpoint)
        self.assertTrue(out_tensor.op.name.startswith(
            'MobilenetV1/' + endpoint))
pkulzc's avatar
pkulzc committed
107
        self.assertItemsEqual(endpoints[:index+1], end_points.keys())
andrewghoward's avatar
andrewghoward committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

  def testBuildCustomNetworkUsingConvDefs(self):
    batch_size = 5
    height, width = 224, 224
    conv_defs = [
        mobilenet_v1.Conv(kernel=[3, 3], stride=2, depth=32),
        mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=1, depth=64),
        mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=2, depth=128),
        mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=1, depth=512)
    ]

    inputs = tf.random_uniform((batch_size, height, width, 3))
    net, end_points = mobilenet_v1.mobilenet_v1_base(
        inputs, final_endpoint='Conv2d_3_pointwise', conv_defs=conv_defs)
    self.assertTrue(net.op.name.startswith('MobilenetV1/Conv2d_3'))
    self.assertListEqual(net.get_shape().as_list(),
                         [batch_size, 56, 56, 512])
    expected_endpoints = ['Conv2d_0',
                          'Conv2d_1_depthwise', 'Conv2d_1_pointwise',
                          'Conv2d_2_depthwise', 'Conv2d_2_pointwise',
                          'Conv2d_3_depthwise', 'Conv2d_3_pointwise']
    self.assertItemsEqual(end_points.keys(), expected_endpoints)

  def testBuildAndCheckAllEndPointsUptoConv2d_13(self):
    batch_size = 5
    height, width = 224, 224

    inputs = tf.random_uniform((batch_size, height, width, 3))
    with slim.arg_scope([slim.conv2d, slim.separable_conv2d],
                        normalizer_fn=slim.batch_norm):
      _, end_points = mobilenet_v1.mobilenet_v1_base(
          inputs, final_endpoint='Conv2d_13_pointwise')
pkulzc's avatar
pkulzc committed
140
141
142
      _, explicit_padding_end_points = mobilenet_v1.mobilenet_v1_base(
          inputs, final_endpoint='Conv2d_13_pointwise',
          use_explicit_padding=True)
andrewghoward's avatar
andrewghoward committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    endpoints_shapes = {'Conv2d_0': [batch_size, 112, 112, 32],
                        'Conv2d_1_depthwise': [batch_size, 112, 112, 32],
                        'Conv2d_1_pointwise': [batch_size, 112, 112, 64],
                        'Conv2d_2_depthwise': [batch_size, 56, 56, 64],
                        'Conv2d_2_pointwise': [batch_size, 56, 56, 128],
                        'Conv2d_3_depthwise': [batch_size, 56, 56, 128],
                        'Conv2d_3_pointwise': [batch_size, 56, 56, 128],
                        'Conv2d_4_depthwise': [batch_size, 28, 28, 128],
                        'Conv2d_4_pointwise': [batch_size, 28, 28, 256],
                        'Conv2d_5_depthwise': [batch_size, 28, 28, 256],
                        'Conv2d_5_pointwise': [batch_size, 28, 28, 256],
                        'Conv2d_6_depthwise': [batch_size, 14, 14, 256],
                        'Conv2d_6_pointwise': [batch_size, 14, 14, 512],
                        'Conv2d_7_depthwise': [batch_size, 14, 14, 512],
                        'Conv2d_7_pointwise': [batch_size, 14, 14, 512],
                        'Conv2d_8_depthwise': [batch_size, 14, 14, 512],
                        'Conv2d_8_pointwise': [batch_size, 14, 14, 512],
                        'Conv2d_9_depthwise': [batch_size, 14, 14, 512],
                        'Conv2d_9_pointwise': [batch_size, 14, 14, 512],
                        'Conv2d_10_depthwise': [batch_size, 14, 14, 512],
                        'Conv2d_10_pointwise': [batch_size, 14, 14, 512],
                        'Conv2d_11_depthwise': [batch_size, 14, 14, 512],
                        'Conv2d_11_pointwise': [batch_size, 14, 14, 512],
                        'Conv2d_12_depthwise': [batch_size, 7, 7, 512],
                        'Conv2d_12_pointwise': [batch_size, 7, 7, 1024],
                        'Conv2d_13_depthwise': [batch_size, 7, 7, 1024],
                        'Conv2d_13_pointwise': [batch_size, 7, 7, 1024]}
    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
Mark Sandler's avatar
Mark Sandler committed
171
    for endpoint_name, expected_shape in endpoints_shapes.items():
andrewghoward's avatar
andrewghoward committed
172
173
174
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)
pkulzc's avatar
pkulzc committed
175
176
    self.assertItemsEqual(endpoints_shapes.keys(),
                          explicit_padding_end_points.keys())
Mark Sandler's avatar
Mark Sandler committed
177
    for endpoint_name, expected_shape in endpoints_shapes.items():
pkulzc's avatar
pkulzc committed
178
179
180
181
      self.assertTrue(endpoint_name in explicit_padding_end_points)
      self.assertListEqual(
          explicit_padding_end_points[endpoint_name].get_shape().as_list(),
          expected_shape)
andrewghoward's avatar
andrewghoward committed
182
183
184
185
186
187
188
189
190
191
192
193

  def testOutputStride16BuildAndCheckAllEndPointsUptoConv2d_13(self):
    batch_size = 5
    height, width = 224, 224
    output_stride = 16

    inputs = tf.random_uniform((batch_size, height, width, 3))
    with slim.arg_scope([slim.conv2d, slim.separable_conv2d],
                        normalizer_fn=slim.batch_norm):
      _, end_points = mobilenet_v1.mobilenet_v1_base(
          inputs, output_stride=output_stride,
          final_endpoint='Conv2d_13_pointwise')
pkulzc's avatar
pkulzc committed
194
195
196
      _, explicit_padding_end_points = mobilenet_v1.mobilenet_v1_base(
          inputs, output_stride=output_stride,
          final_endpoint='Conv2d_13_pointwise', use_explicit_padding=True)
andrewghoward's avatar
andrewghoward committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    endpoints_shapes = {'Conv2d_0': [batch_size, 112, 112, 32],
                        'Conv2d_1_depthwise': [batch_size, 112, 112, 32],
                        'Conv2d_1_pointwise': [batch_size, 112, 112, 64],
                        'Conv2d_2_depthwise': [batch_size, 56, 56, 64],
                        'Conv2d_2_pointwise': [batch_size, 56, 56, 128],
                        'Conv2d_3_depthwise': [batch_size, 56, 56, 128],
                        'Conv2d_3_pointwise': [batch_size, 56, 56, 128],
                        'Conv2d_4_depthwise': [batch_size, 28, 28, 128],
                        'Conv2d_4_pointwise': [batch_size, 28, 28, 256],
                        'Conv2d_5_depthwise': [batch_size, 28, 28, 256],
                        'Conv2d_5_pointwise': [batch_size, 28, 28, 256],
                        'Conv2d_6_depthwise': [batch_size, 14, 14, 256],
                        'Conv2d_6_pointwise': [batch_size, 14, 14, 512],
                        'Conv2d_7_depthwise': [batch_size, 14, 14, 512],
                        'Conv2d_7_pointwise': [batch_size, 14, 14, 512],
                        'Conv2d_8_depthwise': [batch_size, 14, 14, 512],
                        'Conv2d_8_pointwise': [batch_size, 14, 14, 512],
                        'Conv2d_9_depthwise': [batch_size, 14, 14, 512],
                        'Conv2d_9_pointwise': [batch_size, 14, 14, 512],
                        'Conv2d_10_depthwise': [batch_size, 14, 14, 512],
                        'Conv2d_10_pointwise': [batch_size, 14, 14, 512],
                        'Conv2d_11_depthwise': [batch_size, 14, 14, 512],
                        'Conv2d_11_pointwise': [batch_size, 14, 14, 512],
                        'Conv2d_12_depthwise': [batch_size, 14, 14, 512],
                        'Conv2d_12_pointwise': [batch_size, 14, 14, 1024],
                        'Conv2d_13_depthwise': [batch_size, 14, 14, 1024],
                        'Conv2d_13_pointwise': [batch_size, 14, 14, 1024]}
    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
Mark Sandler's avatar
Mark Sandler committed
225
    for endpoint_name, expected_shape in endpoints_shapes.items():
andrewghoward's avatar
andrewghoward committed
226
227
228
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)
pkulzc's avatar
pkulzc committed
229
230
    self.assertItemsEqual(endpoints_shapes.keys(),
                          explicit_padding_end_points.keys())
Mark Sandler's avatar
Mark Sandler committed
231
    for endpoint_name, expected_shape in endpoints_shapes.items():
pkulzc's avatar
pkulzc committed
232
233
234
235
      self.assertTrue(endpoint_name in explicit_padding_end_points)
      self.assertListEqual(
          explicit_padding_end_points[endpoint_name].get_shape().as_list(),
          expected_shape)
andrewghoward's avatar
andrewghoward committed
236
237
238
239
240
241
242
243
244
245
246
247

  def testOutputStride8BuildAndCheckAllEndPointsUptoConv2d_13(self):
    batch_size = 5
    height, width = 224, 224
    output_stride = 8

    inputs = tf.random_uniform((batch_size, height, width, 3))
    with slim.arg_scope([slim.conv2d, slim.separable_conv2d],
                        normalizer_fn=slim.batch_norm):
      _, end_points = mobilenet_v1.mobilenet_v1_base(
          inputs, output_stride=output_stride,
          final_endpoint='Conv2d_13_pointwise')
pkulzc's avatar
pkulzc committed
248
249
250
      _, explicit_padding_end_points = mobilenet_v1.mobilenet_v1_base(
          inputs, output_stride=output_stride,
          final_endpoint='Conv2d_13_pointwise', use_explicit_padding=True)
andrewghoward's avatar
andrewghoward committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
    endpoints_shapes = {'Conv2d_0': [batch_size, 112, 112, 32],
                        'Conv2d_1_depthwise': [batch_size, 112, 112, 32],
                        'Conv2d_1_pointwise': [batch_size, 112, 112, 64],
                        'Conv2d_2_depthwise': [batch_size, 56, 56, 64],
                        'Conv2d_2_pointwise': [batch_size, 56, 56, 128],
                        'Conv2d_3_depthwise': [batch_size, 56, 56, 128],
                        'Conv2d_3_pointwise': [batch_size, 56, 56, 128],
                        'Conv2d_4_depthwise': [batch_size, 28, 28, 128],
                        'Conv2d_4_pointwise': [batch_size, 28, 28, 256],
                        'Conv2d_5_depthwise': [batch_size, 28, 28, 256],
                        'Conv2d_5_pointwise': [batch_size, 28, 28, 256],
                        'Conv2d_6_depthwise': [batch_size, 28, 28, 256],
                        'Conv2d_6_pointwise': [batch_size, 28, 28, 512],
                        'Conv2d_7_depthwise': [batch_size, 28, 28, 512],
                        'Conv2d_7_pointwise': [batch_size, 28, 28, 512],
                        'Conv2d_8_depthwise': [batch_size, 28, 28, 512],
                        'Conv2d_8_pointwise': [batch_size, 28, 28, 512],
                        'Conv2d_9_depthwise': [batch_size, 28, 28, 512],
                        'Conv2d_9_pointwise': [batch_size, 28, 28, 512],
                        'Conv2d_10_depthwise': [batch_size, 28, 28, 512],
                        'Conv2d_10_pointwise': [batch_size, 28, 28, 512],
                        'Conv2d_11_depthwise': [batch_size, 28, 28, 512],
                        'Conv2d_11_pointwise': [batch_size, 28, 28, 512],
                        'Conv2d_12_depthwise': [batch_size, 28, 28, 512],
                        'Conv2d_12_pointwise': [batch_size, 28, 28, 1024],
                        'Conv2d_13_depthwise': [batch_size, 28, 28, 1024],
                        'Conv2d_13_pointwise': [batch_size, 28, 28, 1024]}
    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
Mark Sandler's avatar
Mark Sandler committed
279
    for endpoint_name, expected_shape in endpoints_shapes.items():
andrewghoward's avatar
andrewghoward committed
280
281
282
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)
pkulzc's avatar
pkulzc committed
283
284
    self.assertItemsEqual(endpoints_shapes.keys(),
                          explicit_padding_end_points.keys())
Mark Sandler's avatar
Mark Sandler committed
285
    for endpoint_name, expected_shape in endpoints_shapes.items():
pkulzc's avatar
pkulzc committed
286
287
288
289
      self.assertTrue(endpoint_name in explicit_padding_end_points)
      self.assertListEqual(
          explicit_padding_end_points[endpoint_name].get_shape().as_list(),
          expected_shape)
andrewghoward's avatar
andrewghoward committed
290
291
292
293
294
295
296
297
298
299

  def testBuildAndCheckAllEndPointsApproximateFaceNet(self):
    batch_size = 5
    height, width = 128, 128

    inputs = tf.random_uniform((batch_size, height, width, 3))
    with slim.arg_scope([slim.conv2d, slim.separable_conv2d],
                        normalizer_fn=slim.batch_norm):
      _, end_points = mobilenet_v1.mobilenet_v1_base(
          inputs, final_endpoint='Conv2d_13_pointwise', depth_multiplier=0.75)
pkulzc's avatar
pkulzc committed
300
301
302
      _, explicit_padding_end_points = mobilenet_v1.mobilenet_v1_base(
          inputs, final_endpoint='Conv2d_13_pointwise', depth_multiplier=0.75,
          use_explicit_padding=True)
andrewghoward's avatar
andrewghoward committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
    # For the Conv2d_0 layer FaceNet has depth=16
    endpoints_shapes = {'Conv2d_0': [batch_size, 64, 64, 24],
                        'Conv2d_1_depthwise': [batch_size, 64, 64, 24],
                        'Conv2d_1_pointwise': [batch_size, 64, 64, 48],
                        'Conv2d_2_depthwise': [batch_size, 32, 32, 48],
                        'Conv2d_2_pointwise': [batch_size, 32, 32, 96],
                        'Conv2d_3_depthwise': [batch_size, 32, 32, 96],
                        'Conv2d_3_pointwise': [batch_size, 32, 32, 96],
                        'Conv2d_4_depthwise': [batch_size, 16, 16, 96],
                        'Conv2d_4_pointwise': [batch_size, 16, 16, 192],
                        'Conv2d_5_depthwise': [batch_size, 16, 16, 192],
                        'Conv2d_5_pointwise': [batch_size, 16, 16, 192],
                        'Conv2d_6_depthwise': [batch_size, 8, 8, 192],
                        'Conv2d_6_pointwise': [batch_size, 8, 8, 384],
                        'Conv2d_7_depthwise': [batch_size, 8, 8, 384],
                        'Conv2d_7_pointwise': [batch_size, 8, 8, 384],
                        'Conv2d_8_depthwise': [batch_size, 8, 8, 384],
                        'Conv2d_8_pointwise': [batch_size, 8, 8, 384],
                        'Conv2d_9_depthwise': [batch_size, 8, 8, 384],
                        'Conv2d_9_pointwise': [batch_size, 8, 8, 384],
                        'Conv2d_10_depthwise': [batch_size, 8, 8, 384],
                        'Conv2d_10_pointwise': [batch_size, 8, 8, 384],
                        'Conv2d_11_depthwise': [batch_size, 8, 8, 384],
                        'Conv2d_11_pointwise': [batch_size, 8, 8, 384],
                        'Conv2d_12_depthwise': [batch_size, 4, 4, 384],
                        'Conv2d_12_pointwise': [batch_size, 4, 4, 768],
                        'Conv2d_13_depthwise': [batch_size, 4, 4, 768],
                        'Conv2d_13_pointwise': [batch_size, 4, 4, 768]}
    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
Mark Sandler's avatar
Mark Sandler committed
332
    for endpoint_name, expected_shape in endpoints_shapes.items():
andrewghoward's avatar
andrewghoward committed
333
334
335
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)
pkulzc's avatar
pkulzc committed
336
337
    self.assertItemsEqual(endpoints_shapes.keys(),
                          explicit_padding_end_points.keys())
Mark Sandler's avatar
Mark Sandler committed
338
    for endpoint_name, expected_shape in endpoints_shapes.items():
pkulzc's avatar
pkulzc committed
339
340
341
342
      self.assertTrue(endpoint_name in explicit_padding_end_points)
      self.assertListEqual(
          explicit_padding_end_points[endpoint_name].get_shape().as_list(),
          expected_shape)
andrewghoward's avatar
andrewghoward committed
343
344
345
346
347
348
349
350
351
352

  def testModelHasExpectedNumberOfParameters(self):
    batch_size = 5
    height, width = 224, 224
    inputs = tf.random_uniform((batch_size, height, width, 3))
    with slim.arg_scope([slim.conv2d, slim.separable_conv2d],
                        normalizer_fn=slim.batch_norm):
      mobilenet_v1.mobilenet_v1_base(inputs)
      total_params, _ = slim.model_analyzer.analyze_vars(
          slim.get_model_variables())
353
      self.assertAlmostEqual(3217920, total_params)
andrewghoward's avatar
andrewghoward committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

  def testBuildEndPointsWithDepthMultiplierLessThanOne(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = 1000

    inputs = tf.random_uniform((batch_size, height, width, 3))
    _, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes)

    endpoint_keys = [key for key in end_points.keys() if key.startswith('Conv')]

    _, end_points_with_multiplier = mobilenet_v1.mobilenet_v1(
        inputs, num_classes, scope='depth_multiplied_net',
        depth_multiplier=0.5)

    for key in endpoint_keys:
      original_depth = end_points[key].get_shape().as_list()[3]
      new_depth = end_points_with_multiplier[key].get_shape().as_list()[3]
      self.assertEqual(0.5 * original_depth, new_depth)

  def testBuildEndPointsWithDepthMultiplierGreaterThanOne(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = 1000

    inputs = tf.random_uniform((batch_size, height, width, 3))
    _, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes)

    endpoint_keys = [key for key in end_points.keys()
                     if key.startswith('Mixed') or key.startswith('Conv')]

    _, end_points_with_multiplier = mobilenet_v1.mobilenet_v1(
        inputs, num_classes, scope='depth_multiplied_net',
        depth_multiplier=2.0)

    for key in endpoint_keys:
      original_depth = end_points[key].get_shape().as_list()[3]
      new_depth = end_points_with_multiplier[key].get_shape().as_list()[3]
      self.assertEqual(2.0 * original_depth, new_depth)

  def testRaiseValueErrorWithInvalidDepthMultiplier(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = 1000

    inputs = tf.random_uniform((batch_size, height, width, 3))
    with self.assertRaises(ValueError):
      _ = mobilenet_v1.mobilenet_v1(
          inputs, num_classes, depth_multiplier=-0.1)
    with self.assertRaises(ValueError):
      _ = mobilenet_v1.mobilenet_v1(
          inputs, num_classes, depth_multiplier=0.0)

  def testHalfSizeImages(self):
    batch_size = 5
    height, width = 112, 112
    num_classes = 1000

    inputs = tf.random_uniform((batch_size, height, width, 3))
    logits, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes)
    self.assertTrue(logits.op.name.startswith('MobilenetV1/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    pre_pool = end_points['Conv2d_13_pointwise']
    self.assertListEqual(pre_pool.get_shape().as_list(),
                         [batch_size, 4, 4, 1024])

  def testUnknownImageShape(self):
    tf.reset_default_graph()
    batch_size = 2
    height, width = 224, 224
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3))
      logits, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes)
      self.assertTrue(logits.op.name.startswith('MobilenetV1/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Conv2d_13_pointwise']
      feed_dict = {inputs: input_np}
      tf.global_variables_initializer().run()
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])

439
440
  def testGlobalPoolUnknownImageShape(self):
    tf.reset_default_graph()
pkulzc's avatar
pkulzc committed
441
442
    batch_size = 1
    height, width = 250, 300
443
444
445
446
447
448
449
450
451
452
453
454
455
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3))
      logits, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes,
                                                     global_pool=True)
      self.assertTrue(logits.op.name.startswith('MobilenetV1/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Conv2d_13_pointwise']
      feed_dict = {inputs: input_np}
      tf.global_variables_initializer().run()
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
pkulzc's avatar
pkulzc committed
456
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 10, 1024])
457

andrewghoward's avatar
andrewghoward committed
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
  def testUnknowBatchSize(self):
    batch_size = 1
    height, width = 224, 224
    num_classes = 1000

    inputs = tf.placeholder(tf.float32, (None, height, width, 3))
    logits, _ = mobilenet_v1.mobilenet_v1(inputs, num_classes)
    self.assertTrue(logits.op.name.startswith('MobilenetV1/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [None, num_classes])
    images = tf.random_uniform((batch_size, height, width, 3))

    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      output = sess.run(logits, {inputs: images.eval()})
      self.assertEquals(output.shape, (batch_size, num_classes))

  def testEvaluation(self):
    batch_size = 2
    height, width = 224, 224
    num_classes = 1000

    eval_inputs = tf.random_uniform((batch_size, height, width, 3))
    logits, _ = mobilenet_v1.mobilenet_v1(eval_inputs, num_classes,
                                          is_training=False)
    predictions = tf.argmax(logits, 1)

    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      output = sess.run(predictions)
      self.assertEquals(output.shape, (batch_size,))

  def testTrainEvalWithReuse(self):
    train_batch_size = 5
    eval_batch_size = 2
    height, width = 150, 150
    num_classes = 1000

    train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
    mobilenet_v1.mobilenet_v1(train_inputs, num_classes)
    eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
    logits, _ = mobilenet_v1.mobilenet_v1(eval_inputs, num_classes,
                                          reuse=True)
    predictions = tf.argmax(logits, 1)

    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      output = sess.run(predictions)
      self.assertEquals(output.shape, (eval_batch_size,))

  def testLogitsNotSqueezed(self):
    num_classes = 25
    images = tf.random_uniform([1, 224, 224, 3])
    logits, _ = mobilenet_v1.mobilenet_v1(images,
                                          num_classes=num_classes,
                                          spatial_squeeze=False)

    with self.test_session() as sess:
      tf.global_variables_initializer().run()
      logits_out = sess.run(logits)
      self.assertListEqual(list(logits_out.shape), [1, 1, 1, num_classes])

520
521
522
523
524
525
526
527
528
529
530
531
  def testBatchNormScopeDoesNotHaveIsTrainingWhenItsSetToNone(self):
    sc = mobilenet_v1.mobilenet_v1_arg_scope(is_training=None)
    self.assertNotIn('is_training', sc[slim.arg_scope_func_key(
        slim.batch_norm)])

  def testBatchNormScopeDoesHasIsTrainingWhenItsNotNone(self):
    sc = mobilenet_v1.mobilenet_v1_arg_scope(is_training=True)
    self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)])
    sc = mobilenet_v1.mobilenet_v1_arg_scope(is_training=False)
    self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)])
    sc = mobilenet_v1.mobilenet_v1_arg_scope()
    self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)])
andrewghoward's avatar
andrewghoward committed
532
533
534

if __name__ == '__main__':
  tf.test.main()