inception_resnet_v2.py 18 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains the definition of the Inception Resnet V2 architecture.

As described in http://arxiv.org/abs/1602.07261.

  Inception-v4, Inception-ResNet and the Impact of Residual Connections
    on Learning
  Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function


import tensorflow as tf

slim = tf.contrib.slim


def block35(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
  """Builds the 35x35 resnet block."""
  with tf.variable_scope(scope, 'Block35', [net], reuse=reuse):
    with tf.variable_scope('Branch_0'):
      tower_conv = slim.conv2d(net, 32, 1, scope='Conv2d_1x1')
    with tf.variable_scope('Branch_1'):
      tower_conv1_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')
      tower_conv1_1 = slim.conv2d(tower_conv1_0, 32, 3, scope='Conv2d_0b_3x3')
    with tf.variable_scope('Branch_2'):
      tower_conv2_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')
      tower_conv2_1 = slim.conv2d(tower_conv2_0, 48, 3, scope='Conv2d_0b_3x3')
      tower_conv2_2 = slim.conv2d(tower_conv2_1, 64, 3, scope='Conv2d_0c_3x3')
45
    mixed = tf.concat(axis=3, values=[tower_conv, tower_conv1_1, tower_conv2_2])
46
47
    up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
                     activation_fn=None, scope='Conv2d_1x1')
48
49
50
51
52
53
    scaled_up = up * scale
    if activation_fn == tf.nn.relu6:
      # Use clip_by_value to simulate bandpass activation.
      scaled_up = tf.clip_by_value(scaled_up, -6.0, 6.0)

    net += scaled_up
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    if activation_fn:
      net = activation_fn(net)
  return net


def block17(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
  """Builds the 17x17 resnet block."""
  with tf.variable_scope(scope, 'Block17', [net], reuse=reuse):
    with tf.variable_scope('Branch_0'):
      tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1')
    with tf.variable_scope('Branch_1'):
      tower_conv1_0 = slim.conv2d(net, 128, 1, scope='Conv2d_0a_1x1')
      tower_conv1_1 = slim.conv2d(tower_conv1_0, 160, [1, 7],
                                  scope='Conv2d_0b_1x7')
      tower_conv1_2 = slim.conv2d(tower_conv1_1, 192, [7, 1],
                                  scope='Conv2d_0c_7x1')
70
    mixed = tf.concat(axis=3, values=[tower_conv, tower_conv1_2])
71
72
    up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
                     activation_fn=None, scope='Conv2d_1x1')
73
74
75
76
77
78
79

    scaled_up = up * scale
    if activation_fn == tf.nn.relu6:
      # Use clip_by_value to simulate bandpass activation.
      scaled_up = tf.clip_by_value(scaled_up, -6.0, 6.0)

    net += scaled_up
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    if activation_fn:
      net = activation_fn(net)
  return net


def block8(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
  """Builds the 8x8 resnet block."""
  with tf.variable_scope(scope, 'Block8', [net], reuse=reuse):
    with tf.variable_scope('Branch_0'):
      tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1')
    with tf.variable_scope('Branch_1'):
      tower_conv1_0 = slim.conv2d(net, 192, 1, scope='Conv2d_0a_1x1')
      tower_conv1_1 = slim.conv2d(tower_conv1_0, 224, [1, 3],
                                  scope='Conv2d_0b_1x3')
      tower_conv1_2 = slim.conv2d(tower_conv1_1, 256, [3, 1],
                                  scope='Conv2d_0c_3x1')
96
    mixed = tf.concat(axis=3, values=[tower_conv, tower_conv1_2])
97
98
    up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
                     activation_fn=None, scope='Conv2d_1x1')
99
100
101
102
103
104
105

    scaled_up = up * scale
    if activation_fn == tf.nn.relu6:
      # Use clip_by_value to simulate bandpass activation.
      scaled_up = tf.clip_by_value(scaled_up, -6.0, 6.0)

    net += scaled_up
106
107
108
109
110
    if activation_fn:
      net = activation_fn(net)
  return net


111
112
113
114
def inception_resnet_v2_base(inputs,
                             final_endpoint='Conv2d_7b_1x1',
                             output_stride=16,
                             align_feature_maps=False,
115
116
                             scope=None,
                             activation_fn=tf.nn.relu):
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
  """Inception model from  http://arxiv.org/abs/1602.07261.

  Constructs an Inception Resnet v2 network from inputs to the given final
  endpoint. This method can construct the network up to the final inception
  block Conv2d_7b_1x1.

  Args:
    inputs: a tensor of size [batch_size, height, width, channels].
    final_endpoint: specifies the endpoint to construct the network up to. It
      can be one of ['Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
      'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3', 'MaxPool_5a_3x3',
      'Mixed_5b', 'Mixed_6a', 'PreAuxLogits', 'Mixed_7a', 'Conv2d_7b_1x1']
    output_stride: A scalar that specifies the requested ratio of input to
      output spatial resolution. Only supports 8 and 16.
    align_feature_maps: When true, changes all the VALID paddings in the network
      to SAME padding so that the feature maps are aligned.
    scope: Optional variable_scope.
134
    activation_fn: Activation function for block scopes.
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

  Returns:
    tensor_out: output tensor corresponding to the final_endpoint.
    end_points: a set of activations for external use, for example summaries or
                losses.

  Raises:
    ValueError: if final_endpoint is not set to one of the predefined values,
      or if the output_stride is not 8 or 16, or if the output_stride is 8 and
      we request an end point after 'PreAuxLogits'.
  """
  if output_stride != 8 and output_stride != 16:
    raise ValueError('output_stride must be 8 or 16.')

  padding = 'SAME' if align_feature_maps else 'VALID'

  end_points = {}

  def add_and_check_final(name, net):
    end_points[name] = net
    return name == final_endpoint

  with tf.variable_scope(scope, 'InceptionResnetV2', [inputs]):
    with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
                        stride=1, padding='SAME'):
      # 149 x 149 x 32
      net = slim.conv2d(inputs, 32, 3, stride=2, padding=padding,
                        scope='Conv2d_1a_3x3')
      if add_and_check_final('Conv2d_1a_3x3', net): return net, end_points

      # 147 x 147 x 32
      net = slim.conv2d(net, 32, 3, padding=padding,
                        scope='Conv2d_2a_3x3')
      if add_and_check_final('Conv2d_2a_3x3', net): return net, end_points
      # 147 x 147 x 64
      net = slim.conv2d(net, 64, 3, scope='Conv2d_2b_3x3')
      if add_and_check_final('Conv2d_2b_3x3', net): return net, end_points
      # 73 x 73 x 64
      net = slim.max_pool2d(net, 3, stride=2, padding=padding,
                            scope='MaxPool_3a_3x3')
      if add_and_check_final('MaxPool_3a_3x3', net): return net, end_points
      # 73 x 73 x 80
      net = slim.conv2d(net, 80, 1, padding=padding,
                        scope='Conv2d_3b_1x1')
      if add_and_check_final('Conv2d_3b_1x1', net): return net, end_points
      # 71 x 71 x 192
      net = slim.conv2d(net, 192, 3, padding=padding,
                        scope='Conv2d_4a_3x3')
      if add_and_check_final('Conv2d_4a_3x3', net): return net, end_points
      # 35 x 35 x 192
      net = slim.max_pool2d(net, 3, stride=2, padding=padding,
                            scope='MaxPool_5a_3x3')
      if add_and_check_final('MaxPool_5a_3x3', net): return net, end_points

      # 35 x 35 x 320
      with tf.variable_scope('Mixed_5b'):
        with tf.variable_scope('Branch_0'):
          tower_conv = slim.conv2d(net, 96, 1, scope='Conv2d_1x1')
        with tf.variable_scope('Branch_1'):
          tower_conv1_0 = slim.conv2d(net, 48, 1, scope='Conv2d_0a_1x1')
          tower_conv1_1 = slim.conv2d(tower_conv1_0, 64, 5,
                                      scope='Conv2d_0b_5x5')
        with tf.variable_scope('Branch_2'):
          tower_conv2_0 = slim.conv2d(net, 64, 1, scope='Conv2d_0a_1x1')
          tower_conv2_1 = slim.conv2d(tower_conv2_0, 96, 3,
                                      scope='Conv2d_0b_3x3')
          tower_conv2_2 = slim.conv2d(tower_conv2_1, 96, 3,
                                      scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
          tower_pool = slim.avg_pool2d(net, 3, stride=1, padding='SAME',
                                       scope='AvgPool_0a_3x3')
          tower_pool_1 = slim.conv2d(tower_pool, 64, 1,
                                     scope='Conv2d_0b_1x1')
        net = tf.concat(
            [tower_conv, tower_conv1_1, tower_conv2_2, tower_pool_1], 3)

      if add_and_check_final('Mixed_5b', net): return net, end_points
      # TODO(alemi): Register intermediate endpoints
213
214
      net = slim.repeat(net, 10, block35, scale=0.17,
                        activation_fn=activation_fn)
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

      # 17 x 17 x 1088 if output_stride == 8,
      # 33 x 33 x 1088 if output_stride == 16
      use_atrous = output_stride == 8

      with tf.variable_scope('Mixed_6a'):
        with tf.variable_scope('Branch_0'):
          tower_conv = slim.conv2d(net, 384, 3, stride=1 if use_atrous else 2,
                                   padding=padding,
                                   scope='Conv2d_1a_3x3')
        with tf.variable_scope('Branch_1'):
          tower_conv1_0 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
          tower_conv1_1 = slim.conv2d(tower_conv1_0, 256, 3,
                                      scope='Conv2d_0b_3x3')
          tower_conv1_2 = slim.conv2d(tower_conv1_1, 384, 3,
                                      stride=1 if use_atrous else 2,
                                      padding=padding,
                                      scope='Conv2d_1a_3x3')
        with tf.variable_scope('Branch_2'):
          tower_pool = slim.max_pool2d(net, 3, stride=1 if use_atrous else 2,
                                       padding=padding,
                                       scope='MaxPool_1a_3x3')
        net = tf.concat([tower_conv, tower_conv1_2, tower_pool], 3)

      if add_and_check_final('Mixed_6a', net): return net, end_points

      # TODO(alemi): register intermediate endpoints
      with slim.arg_scope([slim.conv2d], rate=2 if use_atrous else 1):
243
244
        net = slim.repeat(net, 20, block17, scale=0.10,
                          activation_fn=activation_fn)
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
      if add_and_check_final('PreAuxLogits', net): return net, end_points

      if output_stride == 8:
        # TODO(gpapan): Properly support output_stride for the rest of the net.
        raise ValueError('output_stride==8 is only supported up to the '
                         'PreAuxlogits end_point for now.')

      # 8 x 8 x 2080
      with tf.variable_scope('Mixed_7a'):
        with tf.variable_scope('Branch_0'):
          tower_conv = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
          tower_conv_1 = slim.conv2d(tower_conv, 384, 3, stride=2,
                                     padding=padding,
                                     scope='Conv2d_1a_3x3')
        with tf.variable_scope('Branch_1'):
          tower_conv1 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
          tower_conv1_1 = slim.conv2d(tower_conv1, 288, 3, stride=2,
                                      padding=padding,
                                      scope='Conv2d_1a_3x3')
        with tf.variable_scope('Branch_2'):
          tower_conv2 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
          tower_conv2_1 = slim.conv2d(tower_conv2, 288, 3,
                                      scope='Conv2d_0b_3x3')
          tower_conv2_2 = slim.conv2d(tower_conv2_1, 320, 3, stride=2,
                                      padding=padding,
                                      scope='Conv2d_1a_3x3')
        with tf.variable_scope('Branch_3'):
          tower_pool = slim.max_pool2d(net, 3, stride=2,
                                       padding=padding,
                                       scope='MaxPool_1a_3x3')
        net = tf.concat(
            [tower_conv_1, tower_conv1_1, tower_conv2_2, tower_pool], 3)

      if add_and_check_final('Mixed_7a', net): return net, end_points

      # TODO(alemi): register intermediate endpoints
281
      net = slim.repeat(net, 9, block8, scale=0.20, activation_fn=activation_fn)
282
283
284
285
286
287
288
289
290
      net = block8(net, activation_fn=None)

      # 8 x 8 x 1536
      net = slim.conv2d(net, 1536, 1, scope='Conv2d_7b_1x1')
      if add_and_check_final('Conv2d_7b_1x1', net): return net, end_points

    raise ValueError('final_endpoint (%s) not recognized', final_endpoint)


291
292
293
def inception_resnet_v2(inputs, num_classes=1001, is_training=True,
                        dropout_keep_prob=0.8,
                        reuse=None,
294
                        scope='InceptionResnetV2',
295
296
                        create_aux_logits=True,
                        activation_fn=tf.nn.relu):
297
298
299
300
  """Creates the Inception Resnet V2 model.

  Args:
    inputs: a 4-D tensor of size [batch_size, height, width, 3].
301
302
303
304
305
      Dimension batch_size may be undefined. If create_aux_logits is false,
      also height and width may be undefined.
    num_classes: number of predicted classes. If 0 or None, the logits layer
      is omitted and the input features to the logits layer (before  dropout)
      are returned instead.
306
307
308
309
310
    is_training: whether is training or not.
    dropout_keep_prob: float, the fraction to keep before final layer.
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.
311
    create_aux_logits: Whether to include the auxilliary logits.
312
    activation_fn: Activation function for conv2d.
313
314

  Returns:
315
316
317
    net: the output of the logits layer (if num_classes is a non-zero integer),
      or the non-dropped-out input to the logits layer (if num_classes is 0 or
      None).
318
319
320
321
    end_points: the set of end_points from the inception model.
  """
  end_points = {}

322
  with tf.variable_scope(scope, 'InceptionResnetV2', [inputs],
323
                         reuse=reuse) as scope:
324
325
326
    with slim.arg_scope([slim.batch_norm, slim.dropout],
                        is_training=is_training):

327
328
      net, end_points = inception_resnet_v2_base(inputs, scope=scope,
                                                 activation_fn=activation_fn)
329

330
      if create_aux_logits and num_classes:
331
        with tf.variable_scope('AuxLogits'):
332
333
          aux = end_points['PreAuxLogits']
          aux = slim.avg_pool2d(aux, 5, stride=3, padding='VALID',
334
335
336
337
338
339
340
341
342
                                scope='Conv2d_1a_3x3')
          aux = slim.conv2d(aux, 128, 1, scope='Conv2d_1b_1x1')
          aux = slim.conv2d(aux, 768, aux.get_shape()[1:3],
                            padding='VALID', scope='Conv2d_2a_5x5')
          aux = slim.flatten(aux)
          aux = slim.fully_connected(aux, num_classes, activation_fn=None,
                                     scope='Logits')
          end_points['AuxLogits'] = aux

343
      with tf.variable_scope('Logits'):
344
345
346
347
348
349
350
351
352
353
354
        # TODO(sguada,arnoegw): Consider adding a parameter global_pool which
        # can be set to False to disable pooling here (as in resnet_*()).
        kernel_size = net.get_shape()[1:3]
        if kernel_size.is_fully_defined():
          net = slim.avg_pool2d(net, kernel_size, padding='VALID',
                                scope='AvgPool_1a_8x8')
        else:
          net = tf.reduce_mean(net, [1, 2], keep_dims=True, name='global_pool')
        end_points['global_pool'] = net
        if not num_classes:
          return net, end_points
355
356
357
358
359
360
361
362
        net = slim.flatten(net)
        net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
                           scope='Dropout')
        end_points['PreLogitsFlatten'] = net
        logits = slim.fully_connected(net, num_classes, activation_fn=None,
                                      scope='Logits')
        end_points['Logits'] = logits
        end_points['Predictions'] = tf.nn.softmax(logits, name='Predictions')
363
364
365
366
367

    return logits, end_points
inception_resnet_v2.default_image_size = 299


368
369
370
371
372
def inception_resnet_v2_arg_scope(
    weight_decay=0.00004,
    batch_norm_decay=0.9997,
    batch_norm_epsilon=0.001,
    activation_fn=tf.nn.relu,
373
374
    batch_norm_updates_collections=tf.GraphKeys.UPDATE_OPS,
    batch_norm_scale=False):
Derek Chow's avatar
Derek Chow committed
375
  """Returns the scope with the default parameters for inception_resnet_v2.
376
377
378
379
380

  Args:
    weight_decay: the weight decay for weights variables.
    batch_norm_decay: decay for the moving average of batch_norm momentums.
    batch_norm_epsilon: small float added to variance to avoid dividing by zero.
381
    activation_fn: Activation function for conv2d.
382
383
    batch_norm_updates_collections: Collection for the update ops for
      batch norm.
384
385
    batch_norm_scale: If True, uses an explicit `gamma` multiplier to scale the
      activations in the batch normalization layer.
386
387
388
389
390
391
392
393
394
395
396
397

  Returns:
    a arg_scope with the parameters needed for inception_resnet_v2.
  """
  # Set weight_decay for weights in conv2d and fully_connected layers.
  with slim.arg_scope([slim.conv2d, slim.fully_connected],
                      weights_regularizer=slim.l2_regularizer(weight_decay),
                      biases_regularizer=slim.l2_regularizer(weight_decay)):

    batch_norm_params = {
        'decay': batch_norm_decay,
        'epsilon': batch_norm_epsilon,
398
        'updates_collections': batch_norm_updates_collections,
399
        'fused': None,  # Use fused batch norm if possible.
400
        'scale': batch_norm_scale,
401
402
    }
    # Set activation_fn and parameters for batch_norm.
403
    with slim.arg_scope([slim.conv2d], activation_fn=activation_fn,
404
405
406
                        normalizer_fn=slim.batch_norm,
                        normalizer_params=batch_norm_params) as scope:
      return scope