encoders.py 2.21 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
16
17
18
19
"""Transformer Encoders.

Includes configurations and instantiation methods.
"""
20
21

import dataclasses
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
22
import tensorflow as tf
23

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
24
from official.modeling import tf_utils
25
from official.modeling.hyperparams import base_config
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
26
from official.nlp.modeling import networks
27
28
29
30
31
32
33
34
35
36


@dataclasses.dataclass
class TransformerEncoderConfig(base_config.Config):
  """BERT encoder configuration."""
  vocab_size: int = 30522
  hidden_size: int = 768
  num_layers: int = 12
  num_attention_heads: int = 12
  hidden_activation: str = "gelu"
Chen Chen's avatar
Chen Chen committed
37
  intermediate_size: int = 3072
38
39
40
41
42
  dropout_rate: float = 0.1
  attention_dropout_rate: float = 0.1
  max_position_embeddings: int = 512
  type_vocab_size: int = 2
  initializer_range: float = 0.02
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61


def instantiate_encoder_from_cfg(
    config: TransformerEncoderConfig) -> networks.TransformerEncoder:
  """Instantiate a Transformer encoder network from TransformerEncoderConfig."""
  encoder_network = networks.TransformerEncoder(
      vocab_size=config.vocab_size,
      hidden_size=config.hidden_size,
      num_layers=config.num_layers,
      num_attention_heads=config.num_attention_heads,
      intermediate_size=config.intermediate_size,
      activation=tf_utils.get_activation(config.hidden_activation),
      dropout_rate=config.dropout_rate,
      attention_dropout_rate=config.attention_dropout_rate,
      max_sequence_length=config.max_position_embeddings,
      type_vocab_size=config.type_vocab_size,
      initializer=tf.keras.initializers.TruncatedNormal(
          stddev=config.initializer_range))
  return encoder_network