"docs/en/user_guides/useful_tools.md" did not exist on "cbc2491f556f8f92b141d7a81e08c79beef4515c"
create_finetuning_data.py 6.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT finetuning task dataset generator."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import functools
22
23
24
25
26
import json

from absl import app
from absl import flags
import tensorflow as tf
27
28
from official.nlp.bert import tokenization
from official.nlp.data import classifier_data_lib
29
# word-piece tokenizer based squad_lib
30
from official.nlp.data import squad_lib as squad_lib_wp
31
# sentence-piece tokenizer based squad_lib
32
from official.nlp.data import squad_lib_sp
33
34
35
36
37
38
39
40

FLAGS = flags.FLAGS

flags.DEFINE_enum(
    "fine_tuning_task_type", "classification", ["classification", "squad"],
    "The name of the BERT fine tuning task for which data "
    "will be generated..")

41
# BERT classification specific flags.
42
43
44
45
46
flags.DEFINE_string(
    "input_data_dir", None,
    "The input data dir. Should contain the .tsv files (or other data files) "
    "for the task.")

47
flags.DEFINE_enum("classification_task_name", "MNLI",
48
                  ["COLA", "MNLI", "MRPC", "QNLI", "SST-2", "XNLI"],
49
                  "The name of the task to train BERT classifier.")
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

# BERT Squad task specific flags.
flags.DEFINE_string(
    "squad_data_file", None,
    "The input data file in for generating training data for BERT squad task.")

flags.DEFINE_integer(
    "doc_stride", 128,
    "When splitting up a long document into chunks, how much stride to "
    "take between chunks.")

flags.DEFINE_integer(
    "max_query_length", 64,
    "The maximum number of tokens for the question. Questions longer than "
    "this will be truncated to this length.")

66
67
68
69
flags.DEFINE_bool(
    "version_2_with_negative", False,
    "If true, the SQuAD examples contain some that do not have an answer.")

70
71
72
73
74
75
# Shared flags across BERT fine-tuning tasks.
flags.DEFINE_string("vocab_file", None,
                    "The vocabulary file that the BERT model was trained on.")

flags.DEFINE_string(
    "train_data_output_path", None,
76
    "The path in which generated training input data will be written as tf"
77
    " records.")
78
79
80

flags.DEFINE_string(
    "eval_data_output_path", None,
81
    "The path in which generated training input data will be written as tf"
82
    " records.")
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

flags.DEFINE_string("meta_data_file_path", None,
                    "The path in which input meta data will be written.")

flags.DEFINE_bool(
    "do_lower_case", True,
    "Whether to lower case the input text. Should be True for uncased "
    "models and False for cased models.")

flags.DEFINE_integer(
    "max_seq_length", 128,
    "The maximum total input sequence length after WordPiece tokenization. "
    "Sequences longer than this will be truncated, and sequences shorter "
    "than this will be padded.")

98
99
100
101
102
103
104
105
106
flags.DEFINE_string("sp_model_file", "",
                    "The path to the model used by sentence piece tokenizer.")

flags.DEFINE_enum(
    "tokenizer_impl", "word_piece", ["word_piece", "sentence_piece"],
    "Specifies the tokenizer implementation, i.e., whehter to use word_piece "
    "or sentence_piece tokenizer. Canonical BERT uses word_piece tokenizer, "
    "while ALBERT uses sentence_piece tokenizer.")

107
108
109
110
111
112
113
114
115

def generate_classifier_dataset():
  """Generates classifier dataset and returns input meta data."""
  assert FLAGS.input_data_dir and FLAGS.classification_task_name

  processors = {
      "cola": classifier_data_lib.ColaProcessor,
      "mnli": classifier_data_lib.MnliProcessor,
      "mrpc": classifier_data_lib.MrpcProcessor,
116
117
      "qnli": classifier_data_lib.QnliProcessor,
      "sst-2": classifier_data_lib.SstProcessor,
118
119
120
121
122
123
      "xnli": classifier_data_lib.XnliProcessor,
  }
  task_name = FLAGS.classification_task_name.lower()
  if task_name not in processors:
    raise ValueError("Task not found: %s" % (task_name))

124
125
126
127
128
129
130
131
132
133
134
  if FLAGS.tokenizer_impl == "word_piece":
    tokenizer = tokenization.FullTokenizer(
        vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
    processor_text_fn = tokenization.convert_to_unicode
  else:
    assert FLAGS.tokenizer_impl == "sentence_piece"
    tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
    processor_text_fn = functools.partial(
        tokenization.preprocess_text, lower=FLAGS.do_lower_case)

  processor = processors[task_name](processor_text_fn)
135
136
137
  return classifier_data_lib.generate_tf_record_from_data_file(
      processor,
      FLAGS.input_data_dir,
138
      tokenizer,
139
140
      train_data_output_path=FLAGS.train_data_output_path,
      eval_data_output_path=FLAGS.eval_data_output_path,
141
      max_seq_length=FLAGS.max_seq_length)
142
143
144
145
146


def generate_squad_dataset():
  """Generates squad training dataset and returns input meta data."""
  assert FLAGS.squad_data_file
147
148
149
150
151
152
153
154
155
156
157
  if FLAGS.tokenizer_impl == "word_piece":
    return squad_lib_wp.generate_tf_record_from_json_file(
        FLAGS.squad_data_file, FLAGS.vocab_file, FLAGS.train_data_output_path,
        FLAGS.max_seq_length, FLAGS.do_lower_case, FLAGS.max_query_length,
        FLAGS.doc_stride, FLAGS.version_2_with_negative)
  else:
    assert FLAGS.tokenizer_impl == "sentence_piece"
    return squad_lib_sp.generate_tf_record_from_json_file(
        FLAGS.squad_data_file, FLAGS.sp_model_file,
        FLAGS.train_data_output_path, FLAGS.max_seq_length, FLAGS.do_lower_case,
        FLAGS.max_query_length, FLAGS.doc_stride, FLAGS.version_2_with_negative)
158
159
160


def main(_):
161
162
163
164
165
166
167
168
169
170
  if FLAGS.tokenizer_impl == "word_piece":
    if not FLAGS.vocab_file:
      raise ValueError(
          "FLAG vocab_file for word-piece tokenizer is not specified.")
  else:
    assert FLAGS.tokenizer_impl == "sentence_piece"
    if not FLAGS.sp_model_file:
      raise ValueError(
          "FLAG sp_model_file for sentence-piece tokenizer is not specified.")

171
172
173
174
175
176
177
178
179
180
181
182
183
  if FLAGS.fine_tuning_task_type == "classification":
    input_meta_data = generate_classifier_dataset()
  else:
    input_meta_data = generate_squad_dataset()

  with tf.io.gfile.GFile(FLAGS.meta_data_file_path, "w") as writer:
    writer.write(json.dumps(input_meta_data, indent=4) + "\n")


if __name__ == "__main__":
  flags.mark_flag_as_required("train_data_output_path")
  flags.mark_flag_as_required("meta_data_file_path")
  app.run(main)