model_lib.py 25.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
r"""Constructs model, inputs, and training environment."""
16
17
18
19
20
21
22
23
24

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools

import tensorflow as tf

25
from tensorflow.contrib.tpu.python.tpu import tpu_estimator
26
27
28
29
30
31
32
33
34
35
36
37
from tensorflow.contrib.tpu.python.tpu import tpu_optimizer
from object_detection import eval_util
from object_detection import inputs
from object_detection.builders import model_builder
from object_detection.builders import optimizer_builder
from object_detection.core import standard_fields as fields
from object_detection.utils import config_util
from object_detection.utils import label_map_util
from object_detection.utils import shape_utils
from object_detection.utils import variables_helper
from object_detection.utils import visualization_utils as vis_utils

38
39
40
41
42
43
44
45
46
47
48
49
50
51
# A map of names to methods that help build the model.
MODEL_BUILD_UTIL_MAP = {
    'get_configs_from_pipeline_file':
        config_util.get_configs_from_pipeline_file,
    'create_pipeline_proto_from_configs':
        config_util.create_pipeline_proto_from_configs,
    'merge_external_params_with_configs':
        config_util.merge_external_params_with_configs,
    'create_train_input_fn': inputs.create_train_input_fn,
    'create_eval_input_fn': inputs.create_eval_input_fn,
    'create_predict_input_fn': inputs.create_predict_input_fn,
}


52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
def _get_groundtruth_data(detection_model, class_agnostic):
  """Extracts groundtruth data from detection_model.

  Args:
    detection_model: A `DetectionModel` object.
    class_agnostic: Whether the detections are class_agnostic.

  Returns:
    A tuple of:
    groundtruth: Dictionary with the following fields:
      'groundtruth_boxes': [num_boxes, 4] float32 tensor of boxes, in
        normalized coordinates.
      'groundtruth_classes': [num_boxes] int64 tensor of 1-indexed classes.
      'groundtruth_masks': 3D float32 tensor of instance masks (if provided in
        groundtruth)
    class_agnostic: Boolean indicating whether detections are class agnostic.
  """
  input_data_fields = fields.InputDataFields()
  groundtruth_boxes = detection_model.groundtruth_lists(
      fields.BoxListFields.boxes)[0]
  # For class-agnostic models, groundtruth one-hot encodings collapse to all
  # ones.
  if class_agnostic:
    groundtruth_boxes_shape = tf.shape(groundtruth_boxes)
    groundtruth_classes_one_hot = tf.ones([groundtruth_boxes_shape[0], 1])
  else:
    groundtruth_classes_one_hot = detection_model.groundtruth_lists(
        fields.BoxListFields.classes)[0]
  label_id_offset = 1  # Applying label id offset (b/63711816)
  groundtruth_classes = (
      tf.argmax(groundtruth_classes_one_hot, axis=1) + label_id_offset)
  groundtruth = {
      input_data_fields.groundtruth_boxes: groundtruth_boxes,
      input_data_fields.groundtruth_classes: groundtruth_classes
  }
  if detection_model.groundtruth_has_field(fields.BoxListFields.masks):
    groundtruth[input_data_fields.groundtruth_instance_masks] = (
        detection_model.groundtruth_lists(fields.BoxListFields.masks)[0])
  return groundtruth


def unstack_batch(tensor_dict, unpad_groundtruth_tensors=True):
  """Unstacks all tensors in `tensor_dict` along 0th dimension.

  Unstacks tensor from the tensor dict along 0th dimension and returns a
  tensor_dict containing values that are lists of unstacked tensors.

  Tensors in the `tensor_dict` are expected to be of one of the three shapes:
  1. [batch_size]
  2. [batch_size, height, width, channels]
  3. [batch_size, num_boxes, d1, d2, ... dn]

104
105
  When unpad_groundtruth_tensors is set to true, unstacked tensors of form 3
  above are sliced along the `num_boxes` dimension using the value in tensor
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
  field.InputDataFields.num_groundtruth_boxes.

  Note that this function has a static list of input data fields and has to be
  kept in sync with the InputDataFields defined in core/standard_fields.py

  Args:
    tensor_dict: A dictionary of batched groundtruth tensors.
    unpad_groundtruth_tensors: Whether to remove padding along `num_boxes`
      dimension of the groundtruth tensors.

  Returns:
    A dictionary where the keys are from fields.InputDataFields and values are
    a list of unstacked (optionally unpadded) tensors.

  Raises:
    ValueError: If unpad_tensors is True and `tensor_dict` does not contain
      `num_groundtruth_boxes` tensor.
  """
  unbatched_tensor_dict = {key: tf.unstack(tensor)
                           for key, tensor in tensor_dict.items()}
  if unpad_groundtruth_tensors:
    if (fields.InputDataFields.num_groundtruth_boxes not in
        unbatched_tensor_dict):
      raise ValueError('`num_groundtruth_boxes` not found in tensor_dict. '
                       'Keys available: {}'.format(
                           unbatched_tensor_dict.keys()))
    unbatched_unpadded_tensor_dict = {}
    unpad_keys = set([
        # List of input data fields that are padded along the num_boxes
        # dimension. This list has to be kept in sync with InputDataFields in
        # standard_fields.py.
        fields.InputDataFields.groundtruth_instance_masks,
        fields.InputDataFields.groundtruth_classes,
        fields.InputDataFields.groundtruth_boxes,
        fields.InputDataFields.groundtruth_keypoints,
        fields.InputDataFields.groundtruth_group_of,
        fields.InputDataFields.groundtruth_difficult,
        fields.InputDataFields.groundtruth_is_crowd,
        fields.InputDataFields.groundtruth_area,
        fields.InputDataFields.groundtruth_weights
    ]).intersection(set(unbatched_tensor_dict.keys()))

    for key in unpad_keys:
      unpadded_tensor_list = []
      for num_gt, padded_tensor in zip(
          unbatched_tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
          unbatched_tensor_dict[key]):
        tensor_shape = shape_utils.combined_static_and_dynamic_shape(
            padded_tensor)
        slice_begin = tf.zeros([len(tensor_shape)], dtype=tf.int32)
        slice_size = tf.stack(
            [num_gt] + [-1 if dim is None else dim for dim in tensor_shape[1:]])
        unpadded_tensor = tf.slice(padded_tensor, slice_begin, slice_size)
        unpadded_tensor_list.append(unpadded_tensor)
      unbatched_unpadded_tensor_dict[key] = unpadded_tensor_list
    unbatched_tensor_dict.update(unbatched_unpadded_tensor_dict)

  return unbatched_tensor_dict


def create_model_fn(detection_model_fn, configs, hparams, use_tpu=False):
  """Creates a model function for `Estimator`.

  Args:
    detection_model_fn: Function that returns a `DetectionModel` instance.
    configs: Dictionary of pipeline config objects.
    hparams: `HParams` object.
    use_tpu: Boolean indicating whether model should be constructed for
        use on TPU.

  Returns:
    `model_fn` for `Estimator`.
  """
  train_config = configs['train_config']
  eval_input_config = configs['eval_input_config']
181
  eval_config = configs['eval_config']
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

  def model_fn(features, labels, mode, params=None):
    """Constructs the object detection model.

    Args:
      features: Dictionary of feature tensors, returned from `input_fn`.
      labels: Dictionary of groundtruth tensors if mode is TRAIN or EVAL,
        otherwise None.
      mode: Mode key from tf.estimator.ModeKeys.
      params: Parameter dictionary passed from the estimator.

    Returns:
      An `EstimatorSpec` that encapsulates the model and its serving
        configurations.
    """
    params = params or {}
    total_loss, train_op, detections, export_outputs = None, None, None, None
    is_training = mode == tf.estimator.ModeKeys.TRAIN
    detection_model = detection_model_fn(is_training=is_training,
                                         add_summaries=(not use_tpu))
    scaffold_fn = None

    if mode == tf.estimator.ModeKeys.TRAIN:
      labels = unstack_batch(
          labels,
          unpad_groundtruth_tensors=train_config.unpad_groundtruth_tensors)
    elif mode == tf.estimator.ModeKeys.EVAL:
209
210
211
212
213
214
215
216
      # For evaling on train data, it is necessary to check whether groundtruth
      # must be unpadded.
      boxes_shape = (
          labels[fields.InputDataFields.groundtruth_boxes].get_shape()
          .as_list())
      unpad_groundtruth_tensors = True if boxes_shape[1] is not None else False
      labels = unstack_batch(
          labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors)
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
      gt_boxes_list = labels[fields.InputDataFields.groundtruth_boxes]
      gt_classes_list = labels[fields.InputDataFields.groundtruth_classes]
      gt_masks_list = None
      if fields.InputDataFields.groundtruth_instance_masks in labels:
        gt_masks_list = labels[
            fields.InputDataFields.groundtruth_instance_masks]
      gt_keypoints_list = None
      if fields.InputDataFields.groundtruth_keypoints in labels:
        gt_keypoints_list = labels[fields.InputDataFields.groundtruth_keypoints]
      detection_model.provide_groundtruth(
          groundtruth_boxes_list=gt_boxes_list,
          groundtruth_classes_list=gt_classes_list,
          groundtruth_masks_list=gt_masks_list,
232
233
234
          groundtruth_keypoints_list=gt_keypoints_list,
          groundtruth_weights_list=labels[
              fields.InputDataFields.groundtruth_weights])
235
236
237
238
239
240
241
242
243

    preprocessed_images = features[fields.InputDataFields.image]
    prediction_dict = detection_model.predict(
        preprocessed_images, features[fields.InputDataFields.true_image_shape])
    detections = detection_model.postprocess(
        prediction_dict, features[fields.InputDataFields.true_image_shape])

    if mode == tf.estimator.ModeKeys.TRAIN:
      if train_config.fine_tune_checkpoint and hparams.load_pretrained:
244
245
246
247
248
249
250
251
        if not train_config.fine_tune_checkpoint_type:
          # train_config.from_detection_checkpoint field is deprecated. For
          # backward compatibility, set train_config.fine_tune_checkpoint_type
          # based on train_config.from_detection_checkpoint.
          if train_config.from_detection_checkpoint:
            train_config.fine_tune_checkpoint_type = 'detection'
          else:
            train_config.fine_tune_checkpoint_type = 'classification'
252
        asg_map = detection_model.restore_map(
253
            fine_tune_checkpoint_type=train_config.fine_tune_checkpoint_type,
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
            load_all_detection_checkpoint_vars=(
                train_config.load_all_detection_checkpoint_vars))
        available_var_map = (
            variables_helper.get_variables_available_in_checkpoint(
                asg_map, train_config.fine_tune_checkpoint,
                include_global_step=False))
        if use_tpu:
          def tpu_scaffold():
            tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint,
                                          available_var_map)
            return tf.train.Scaffold()
          scaffold_fn = tpu_scaffold
        else:
          tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint,
                                        available_var_map)

    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
      losses_dict = detection_model.loss(
          prediction_dict, features[fields.InputDataFields.true_image_shape])
      losses = [loss_tensor for loss_tensor in losses_dict.itervalues()]
274
275
276
277
278
279
280
      if train_config.add_regularization_loss:
        regularization_losses = tf.get_collection(
            tf.GraphKeys.REGULARIZATION_LOSSES)
        if regularization_losses:
          regularization_loss = tf.add_n(regularization_losses,
                                         name='regularization_loss')
          losses.append(regularization_loss)
281
          losses_dict['Loss/regularization_loss'] = regularization_loss
282
      total_loss = tf.add_n(losses, name='total_loss')
283
      losses_dict['Loss/total_loss'] = total_loss
284

285
286
287
    if mode in [tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL]:
      # TODO(rathodv): Stop creating optimizer summary vars in EVAL mode once we
      # can write learning rate summaries on TPU without host calls.
288
289
290
291
      global_step = tf.train.get_or_create_global_step()
      training_optimizer, optimizer_summary_vars = optimizer_builder.build(
          train_config.optimizer)

292
    if mode == tf.estimator.ModeKeys.TRAIN:
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
      if use_tpu:
        training_optimizer = tpu_optimizer.CrossShardOptimizer(
            training_optimizer)

      # Optionally freeze some layers by setting their gradients to be zero.
      trainable_variables = None
      if train_config.freeze_variables:
        trainable_variables = tf.contrib.framework.filter_variables(
            tf.trainable_variables(),
            exclude_patterns=train_config.freeze_variables)

      clip_gradients_value = None
      if train_config.gradient_clipping_by_norm > 0:
        clip_gradients_value = train_config.gradient_clipping_by_norm

      if not use_tpu:
        for var in optimizer_summary_vars:
          tf.summary.scalar(var.op.name, var)
      summaries = [] if use_tpu else None
      train_op = tf.contrib.layers.optimize_loss(
          loss=total_loss,
          global_step=global_step,
          learning_rate=None,
          clip_gradients=clip_gradients_value,
          optimizer=training_optimizer,
          variables=trainable_variables,
          summaries=summaries,
          name='')  # Preventing scope prefix on all variables.

    if mode == tf.estimator.ModeKeys.PREDICT:
      export_outputs = {
          tf.saved_model.signature_constants.PREDICT_METHOD_NAME:
              tf.estimator.export.PredictOutput(detections)
      }

    eval_metric_ops = None
329
    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
330
331
332
      class_agnostic = (fields.DetectionResultFields.detection_classes
                        not in detections)
      groundtruth = _get_groundtruth_data(detection_model, class_agnostic)
333
      use_original_images = fields.InputDataFields.original_image in features
334
      original_images = (
335
336
          features[fields.InputDataFields.original_image] if use_original_images
          else features[fields.InputDataFields.image])
337
      eval_dict = eval_util.result_dict_for_single_example(
338
          original_images[0:1],
339
340
341
342
343
344
345
346
347
348
349
          features[inputs.HASH_KEY][0],
          detections,
          groundtruth,
          class_agnostic=class_agnostic,
          scale_to_absolute=False)

      if class_agnostic:
        category_index = label_map_util.create_class_agnostic_category_index()
      else:
        category_index = label_map_util.create_category_index_from_labelmap(
            eval_input_config.label_map_path)
350
      img_summary = None
351
      if not use_tpu and use_original_images:
352
353
354
355
        detection_and_groundtruth = (
            vis_utils.draw_side_by_side_evaluation_image(
                eval_dict, category_index, max_boxes_to_draw=20,
                min_score_thresh=0.2))
356
357
358
359
360
361
362
363
364
365
366
        img_summary = tf.summary.image('Detections_Left_Groundtruth_Right',
                                       detection_and_groundtruth)

      if mode == tf.estimator.ModeKeys.EVAL:
        # Eval metrics on a single example.
        eval_metrics = eval_config.metrics_set
        if not eval_metrics:
          eval_metrics = ['coco_detection_metrics']
        eval_metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
            eval_metrics, category_index.values(), eval_dict,
            include_metrics_per_category=False)
367
368
        for loss_key, loss_tensor in iter(losses_dict.items()):
          eval_metric_ops[loss_key] = tf.metrics.mean(loss_tensor)
369
370
        for var in optimizer_summary_vars:
          eval_metric_ops[str(var.op.name)] = (var, tf.no_op())
371
372
373
        if img_summary is not None:
          eval_metric_ops['Detections_Left_Groundtruth_Right'] = (
              img_summary, tf.no_op())
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

    if use_tpu:
      return tf.contrib.tpu.TPUEstimatorSpec(
          mode=mode,
          scaffold_fn=scaffold_fn,
          predictions=detections,
          loss=total_loss,
          train_op=train_op,
          eval_metrics=eval_metric_ops,
          export_outputs=export_outputs)
    else:
      return tf.estimator.EstimatorSpec(
          mode=mode,
          predictions=detections,
          loss=total_loss,
          train_op=train_op,
          eval_metric_ops=eval_metric_ops,
          export_outputs=export_outputs)

  return model_fn


396
397
398
399
400
401
402
403
404
405
406
407
def create_estimator_and_inputs(run_config,
                                hparams,
                                pipeline_config_path,
                                train_steps=None,
                                eval_steps=None,
                                model_fn_creator=create_model_fn,
                                use_tpu_estimator=False,
                                use_tpu=False,
                                num_shards=1,
                                params=None,
                                **kwargs):
  """Creates `Estimator`, input functions, and steps.
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

  Args:
    run_config: A `RunConfig`.
    hparams: A `HParams`.
    pipeline_config_path: A path to a pipeline config file.
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
    eval_steps: Number of evaluation steps per evaluation cycle. If None, the
      number of evaluation steps is set from the `EvalConfig` proto.
    model_fn_creator: A function that creates a `model_fn` for `Estimator`.
      Follows the signature:

      * Args:
        * `detection_model_fn`: Function that returns `DetectionModel` instance.
        * `configs`: Dictionary of pipeline config objects.
        * `hparams`: `HParams` object.
      * Returns:
        `model_fn` for `Estimator`.

427
428
429
430
431
432
433
434
    use_tpu_estimator: Whether a `TPUEstimator` should be returned. If False,
      an `Estimator` will be returned.
    use_tpu: Boolean, whether training and evaluation should run on TPU. Only
      used if `use_tpu_estimator` is True.
    num_shards: Number of shards (TPU cores). Only used if `use_tpu_estimator`
      is True.
    params: Parameter dictionary passed from the estimator. Only used if
      `use_tpu_estimator` is True.
435
436
437
    **kwargs: Additional keyword arguments for configuration override.

  Returns:
438
439
440
441
442
443
444
445
446
    A dictionary with the following fields:
    'estimator': An `Estimator` or `TPUEstimator`.
    'train_input_fn': A training input function.
    'eval_input_fn': An evaluation input function.
    'predict_input_fn': A prediction input function.
    'train_steps': Number of training steps. Either directly from input or from
      configuration.
    'eval_steps': Number of evaluation steps. Either directly from input or from
      configuration.
447
  """
448
449
450
451
  get_configs_from_pipeline_file = MODEL_BUILD_UTIL_MAP[
      'get_configs_from_pipeline_file']
  merge_external_params_with_configs = MODEL_BUILD_UTIL_MAP[
      'merge_external_params_with_configs']
452
453
  create_pipeline_proto_from_configs = MODEL_BUILD_UTIL_MAP[
      'create_pipeline_proto_from_configs']
454
455
456
457
458
459
  create_train_input_fn = MODEL_BUILD_UTIL_MAP['create_train_input_fn']
  create_eval_input_fn = MODEL_BUILD_UTIL_MAP['create_eval_input_fn']
  create_predict_input_fn = MODEL_BUILD_UTIL_MAP['create_predict_input_fn']

  configs = get_configs_from_pipeline_file(pipeline_config_path)
  configs = merge_external_params_with_configs(
460
461
462
463
464
465
466
467
468
469
470
      configs,
      hparams,
      train_steps=train_steps,
      eval_steps=eval_steps,
      **kwargs)
  model_config = configs['model']
  train_config = configs['train_config']
  train_input_config = configs['train_input_config']
  eval_config = configs['eval_config']
  eval_input_config = configs['eval_input_config']

471
472
  if train_steps is None:
    train_steps = configs['train_config'].num_steps
473

474
475
  if eval_steps is None:
    eval_steps = configs['eval_config'].num_examples
476
477
478
479

  detection_model_fn = functools.partial(
      model_builder.build, model_config=model_config)

480
  # Create the input functions for TRAIN/EVAL/PREDICT.
481
  train_input_fn = create_train_input_fn(
482
483
484
      train_config=train_config,
      train_input_config=train_input_config,
      model_config=model_config)
485
  eval_input_fn = create_eval_input_fn(
486
487
488
      eval_config=eval_config,
      eval_input_config=eval_input_config,
      model_config=model_config)
489
490
491
492
493
494
495
496
497
498
499
500
501
502
  predict_input_fn = create_predict_input_fn(model_config=model_config)

  model_fn = model_fn_creator(detection_model_fn, configs, hparams, use_tpu)
  if use_tpu_estimator:
    estimator = tpu_estimator.TPUEstimator(
        model_fn=model_fn,
        train_batch_size=train_config.batch_size,
        # For each core, only batch size 1 is supported for eval.
        eval_batch_size=num_shards * 1 if use_tpu else 1,
        use_tpu=use_tpu,
        config=run_config,
        params=params if params else {})
  else:
    estimator = tf.estimator.Estimator(model_fn=model_fn, config=run_config)
503

504
  # Write the as-run pipeline config to disk.
505
  if run_config.is_chief:
506
    pipeline_config_final = create_pipeline_proto_from_configs(
507
        configs)
508
    config_util.save_pipeline_config(pipeline_config_final, estimator.model_dir)
509

510
  return dict(
511
512
513
      estimator=estimator,
      train_input_fn=train_input_fn,
      eval_input_fn=eval_input_fn,
514
      predict_input_fn=predict_input_fn,
515
      train_steps=train_steps,
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
      eval_steps=eval_steps)


def create_train_and_eval_specs(train_input_fn,
                                eval_input_fn,
                                predict_input_fn,
                                train_steps,
                                eval_steps,
                                eval_on_train_data=False,
                                final_exporter_name='Servo',
                                eval_spec_name='eval'):
  """Creates a `TrainSpec` and `EvalSpec`s.

  Args:
    train_input_fn: Function that produces features and labels on train data.
    eval_input_fn: Function that produces features and labels on eval data.
    predict_input_fn: Function that produces features for inference.
    train_steps: Number of training steps.
    eval_steps: Number of eval steps.
    eval_on_train_data: Whether to evaluate model on training data. Default is
      False.
    final_exporter_name: String name given to `FinalExporter`.
    eval_spec_name: String name given to main `EvalSpec`.

  Returns:
    Tuple of `TrainSpec` and list of `EvalSpecs`. The first `EvalSpec` is for
    evaluation data. If `eval_on_train_data` is True, the second `EvalSpec` in
    the list will correspond to training data.
  """

  exporter = tf.estimator.FinalExporter(
      name=final_exporter_name, serving_input_receiver_fn=predict_input_fn)

  train_spec = tf.estimator.TrainSpec(
      input_fn=train_input_fn, max_steps=train_steps)

  eval_specs = [
      tf.estimator.EvalSpec(
          name=eval_spec_name,
          input_fn=eval_input_fn,
          steps=eval_steps,
          exporters=exporter)
  ]

  if eval_on_train_data:
    eval_specs.append(
        tf.estimator.EvalSpec(
            name='eval_on_train', input_fn=train_input_fn, steps=eval_steps))

  return train_spec, eval_specs
566
567


568
569
570
571
572
573
574
575
def populate_experiment(run_config,
                        hparams,
                        pipeline_config_path,
                        train_steps=None,
                        eval_steps=None,
                        model_fn_creator=create_model_fn,
                        **kwargs):
  """Populates an `Experiment` object.
576

577
578
  EXPERIMENT CLASS IS DEPRECATED. Please switch to
  tf.estimator.train_and_evaluate. As an example, see model_main.py.
579

580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
  Args:
    run_config: A `RunConfig`.
    hparams: A `HParams`.
    pipeline_config_path: A path to a pipeline config file.
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
    eval_steps: Number of evaluation steps per evaluation cycle. If None, the
      number of evaluation steps is set from the `EvalConfig` proto.
    model_fn_creator: A function that creates a `model_fn` for `Estimator`.
      Follows the signature:

      * Args:
        * `detection_model_fn`: Function that returns `DetectionModel` instance.
        * `configs`: Dictionary of pipeline config objects.
        * `hparams`: `HParams` object.
      * Returns:
        `model_fn` for `Estimator`.

    **kwargs: Additional keyword arguments for configuration override.

  Returns:
    An `Experiment` that defines all aspects of training, evaluation, and
    export.
  """
  tf.logging.warning('Experiment is being deprecated. Please use '
                     'tf.estimator.train_and_evaluate(). See model_main.py for '
                     'an example.')
  train_and_eval_dict = create_estimator_and_inputs(
      run_config,
      hparams,
      pipeline_config_path,
      train_steps=train_steps,
      eval_steps=eval_steps,
      model_fn_creator=model_fn_creator,
      **kwargs)
  estimator = train_and_eval_dict['estimator']
  train_input_fn = train_and_eval_dict['train_input_fn']
  eval_input_fn = train_and_eval_dict['eval_input_fn']
  predict_input_fn = train_and_eval_dict['predict_input_fn']
  train_steps = train_and_eval_dict['train_steps']
  eval_steps = train_and_eval_dict['eval_steps']

  export_strategies = [
      tf.contrib.learn.utils.saved_model_export_utils.make_export_strategy(
          serving_input_fn=predict_input_fn)
  ]

  return tf.contrib.learn.Experiment(
      estimator=estimator,
      train_input_fn=train_input_fn,
      eval_input_fn=eval_input_fn,
      train_steps=train_steps,
      eval_steps=eval_steps,
      export_strategies=export_strategies,
      eval_delay_secs=120,)