train_ctl_continuous_finetune.py 5.81 KB
Newer Older
Le Hou's avatar
Le Hou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""TFM continuous finetuning+eval training driver."""

import os
import time
from typing import Mapping, Any

from absl import app
from absl import flags
from absl import logging
import gin
import tensorflow as tf

# pylint: disable=unused-import
from official.common import registry_imports
# pylint: enable=unused-import
from official.common import flags as tfm_flags
from official.core import task_factory
from official.core import train_lib
from official.core import train_utils
from official.modeling import performance
from official.modeling.hyperparams import config_definitions
from official.utils.misc import distribution_utils


FLAGS = flags.FLAGS


def run_continuous_finetune(
    mode: str,
    params: config_definitions.ExperimentConfig,
    model_dir: str,
    run_post_eval: bool = False,
) -> Mapping[str, Any]:
  """Run modes with continuous training.

  Currently only supports continuous_train_and_eval.

  Args:
    mode: A 'str', specifying the mode.
      continuous_train_and_eval - monitors a checkpoint directory. Once a new
        checkpoint is discovered, loads the checkpoint, finetune the model by
        training it (probably on another dataset or with another task), then
        evaluate the finetuned model.
    params: ExperimentConfig instance.
    model_dir: A 'str', a path to store model checkpoints and summaries.
    run_post_eval: Whether to run post eval once after training, metrics logs
      are returned.

  Returns:
    eval logs: returns eval metrics logs when run_post_eval is set to True,
      othewise, returns {}.
  """

  assert mode == 'continuous_train_and_eval', (
      'Only continuous_train_and_eval is supported by continuous_finetune. '
      'Got mode: {}'.format(mode))

  # Sets mixed_precision policy. Using 'mixed_float16' or 'mixed_bfloat16'
  # can have significant impact on model speeds by utilizing float16 in case of
  # GPUs, and bfloat16 in the case of TPUs. loss_scale takes effect only when
  # dtype is float16
  if params.runtime.mixed_precision_dtype:
    performance.set_mixed_precision_policy(params.runtime.mixed_precision_dtype,
                                           params.runtime.loss_scale)
  distribution_strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=params.runtime.distribution_strategy,
      all_reduce_alg=params.runtime.all_reduce_alg,
      num_gpus=params.runtime.num_gpus,
      tpu_address=params.runtime.tpu)

  retry_times = 0
  while not tf.io.gfile.isdir(params.task.init_checkpoint):
    # Wait for the init_checkpoint directory to be created.
    if retry_times >= 60:
      raise ValueError(
          'ExperimentConfig.task.init_checkpoint must be a directory for '
          'continuous_train_and_eval mode.')
    retry_times += 1
    time.sleep(60)

  summary_writer = tf.summary.create_file_writer(
      os.path.join(model_dir, 'eval'))
  for pretrain_ckpt in tf.train.checkpoints_iterator(
      checkpoint_dir=params.task.init_checkpoint,
      min_interval_secs=10,
      timeout=params.trainer.continuous_eval_timeout):
    with distribution_strategy.scope():
      global_step = train_utils.read_global_step_from_checkpoint(pretrain_ckpt)

    if params.trainer.best_checkpoint_export_subdir:
      best_ckpt_subdir = '{}_{}'.format(
          params.trainer.best_checkpoint_export_subdir, global_step)
      params_replaced = params.replace(
          task={'init_checkpoint': pretrain_ckpt},
          trainer={'best_checkpoint_export_subdir': best_ckpt_subdir})
    else:
      params_replaced = params.replace(task={'init_checkpoint': pretrain_ckpt})
    params_replaced.lock()
    logging.info('Running finetuning with params: %s', params_replaced)

    with distribution_strategy.scope():
      task = task_factory.get_task(params_replaced.task, logging_dir=model_dir)

    _, eval_metrics = train_lib.run_experiment(
        distribution_strategy=distribution_strategy,
        task=task,
        mode='train_and_eval',
        # replace params.task.init_checkpoint to make sure that we load
        # exactly this pretrain checkpoint.
        params=params_replaced,
        model_dir=model_dir,
        run_post_eval=True,
        save_summary=False)
    logging.info('Evaluation finished. Pretrain global_step: %d', global_step)
    train_utils.write_json_summary(model_dir, global_step, eval_metrics)

    if not os.path.basename(model_dir):  # if model_dir.endswith('/')
      summary_grp = os.path.dirname(model_dir) + '_' + task.__class__.__name__
    else:
      summary_grp = os.path.basename(model_dir) + '_' + task.__class__.__name__
    summaries = {}
    for name, value in eval_metrics.items():
      summaries[summary_grp + '/' + name] = value
    train_utils.write_summary(summary_writer, global_step, summaries)

    train_utils.remove_ckpts(model_dir)

  if run_post_eval:
    return eval_metrics
  return {}


def main(_):
  gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_params)
  params = train_utils.parse_configuration(FLAGS)
  model_dir = FLAGS.model_dir
  train_utils.serialize_config(params, model_dir)
  run_continuous_finetune(FLAGS.mode, params, model_dir)


if __name__ == '__main__':
  tfm_flags.define_flags()
  app.run(main)