movinet_test.py 7.68 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Dan Kondratyuk's avatar
Dan Kondratyuk committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for movinet.py."""

from absl.testing import parameterized
import tensorflow as tf

Dan Kondratyuk's avatar
Dan Kondratyuk committed
20
from official.projects.movinet.modeling import movinet
Dan Kondratyuk's avatar
Dan Kondratyuk committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36


class MoViNetTest(parameterized.TestCase, tf.test.TestCase):

  def test_network_creation(self):
    """Test creation of MoViNet family models."""
    tf.keras.backend.set_image_data_format('channels_last')

    network = movinet.Movinet(
        model_id='a0',
        causal=True,
    )
    inputs = tf.keras.Input(shape=(8, 128, 128, 3), batch_size=1)
    endpoints, states = network(inputs)

    self.assertAllEqual(endpoints['stem'].shape, [1, 8, 64, 64, 8])
37
38
39
40
41
    self.assertAllEqual(endpoints['block0_layer0'].shape, [1, 8, 32, 32, 8])
    self.assertAllEqual(endpoints['block1_layer0'].shape, [1, 8, 16, 16, 32])
    self.assertAllEqual(endpoints['block2_layer0'].shape, [1, 8, 8, 8, 56])
    self.assertAllEqual(endpoints['block3_layer0'].shape, [1, 8, 8, 8, 56])
    self.assertAllEqual(endpoints['block4_layer0'].shape, [1, 8, 4, 4, 104])
Dan Kondratyuk's avatar
Dan Kondratyuk committed
42
43
44
45
46
47
48
49
    self.assertAllEqual(endpoints['head'].shape, [1, 1, 1, 1, 480])

    self.assertNotEmpty(states)

  def test_network_with_states(self):
    """Test creation of MoViNet family models with states."""
    tf.keras.backend.set_image_data_format('channels_last')

50
    backbone = movinet.Movinet(
Dan Kondratyuk's avatar
Dan Kondratyuk committed
51
52
        model_id='a0',
        causal=True,
53
        use_external_states=True,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
54
55
56
    )
    inputs = tf.ones([1, 8, 128, 128, 3])

57
58
    init_states = backbone.init_states(tf.shape(inputs))
    endpoints, new_states = backbone({**init_states, 'image': inputs})
Dan Kondratyuk's avatar
Dan Kondratyuk committed
59
60

    self.assertAllEqual(endpoints['stem'].shape, [1, 8, 64, 64, 8])
61
62
63
64
65
    self.assertAllEqual(endpoints['block0_layer0'].shape, [1, 8, 32, 32, 8])
    self.assertAllEqual(endpoints['block1_layer0'].shape, [1, 8, 16, 16, 32])
    self.assertAllEqual(endpoints['block2_layer0'].shape, [1, 8, 8, 8, 56])
    self.assertAllEqual(endpoints['block3_layer0'].shape, [1, 8, 8, 8, 56])
    self.assertAllEqual(endpoints['block4_layer0'].shape, [1, 8, 4, 4, 104])
Dan Kondratyuk's avatar
Dan Kondratyuk committed
66
67
    self.assertAllEqual(endpoints['head'].shape, [1, 1, 1, 1, 480])

68
    self.assertNotEmpty(init_states)
Dan Kondratyuk's avatar
Dan Kondratyuk committed
69
70
71
    self.assertNotEmpty(new_states)

  def test_movinet_stream(self):
72
    """Test if the backbone can be run in streaming mode."""
Dan Kondratyuk's avatar
Dan Kondratyuk committed
73
74
    tf.keras.backend.set_image_data_format('channels_last')

75
    backbone = movinet.Movinet(
Dan Kondratyuk's avatar
Dan Kondratyuk committed
76
77
        model_id='a0',
        causal=True,
78
        use_external_states=True,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
79
80
81
    )
    inputs = tf.ones([1, 5, 128, 128, 3])

82
83
    init_states = backbone.init_states(tf.shape(inputs))
    expected_endpoints, _ = backbone({**init_states, 'image': inputs})
Dan Kondratyuk's avatar
Dan Kondratyuk committed
84
85
86

    frames = tf.split(inputs, inputs.shape[1], axis=1)

87
    states = init_states
Dan Kondratyuk's avatar
Dan Kondratyuk committed
88
    for frame in frames:
89
      output, states = backbone({**states, 'image': frame})
Dan Kondratyuk's avatar
Dan Kondratyuk committed
90
91
92
93
94
95
96
97
98
99
100
    predicted_endpoints = output

    predicted = predicted_endpoints['head']

    # The expected final output is simply the mean across frames
    expected = expected_endpoints['head']
    expected = tf.reduce_mean(expected, 1, keepdims=True)

    self.assertEqual(predicted.shape, expected.shape)
    self.assertAllClose(predicted, expected, 1e-5, 1e-5)

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
  def test_movinet_stream_nse(self):
    """Test if the backbone can be run in streaming mode w/o SE layer."""
    tf.keras.backend.set_image_data_format('channels_last')

    backbone = movinet.Movinet(
        model_id='a0',
        causal=True,
        use_external_states=True,
        se_type='none',
    )
    inputs = tf.ones([1, 5, 128, 128, 3])

    init_states = backbone.init_states(tf.shape(inputs))
    expected_endpoints, _ = backbone({**init_states, 'image': inputs})

    frames = tf.split(inputs, inputs.shape[1], axis=1)

    states = init_states
    for frame in frames:
      output, states = backbone({**states, 'image': frame})
    predicted_endpoints = output

    predicted = predicted_endpoints['head']

    # The expected final output is simply the mean across frames
    expected = expected_endpoints['head']
    expected = tf.reduce_mean(expected, 1, keepdims=True)

    self.assertEqual(predicted.shape, expected.shape)
    self.assertAllClose(predicted, expected, 1e-5, 1e-5)

    # Check contents in the states dictionary.
    state_keys = list(init_states.keys())
    self.assertIn('state_head_pool_buffer', state_keys)
    self.assertIn('state_head_pool_frame_count', state_keys)
    state_keys.remove('state_head_pool_buffer')
    state_keys.remove('state_head_pool_frame_count')
    # From now on, there are only 'stream_buffer' for the convolutions.
    for state_key in state_keys:
      self.assertIn(
          'stream_buffer', state_key,
          msg=f'Expecting stream_buffer only, found {state_key}')

Dan Kondratyuk's avatar
Dan Kondratyuk committed
144
145
146
  def test_movinet_2plus1d_stream(self):
    tf.keras.backend.set_image_data_format('channels_last')

147
    backbone = movinet.Movinet(
Dan Kondratyuk's avatar
Dan Kondratyuk committed
148
149
150
        model_id='a0',
        causal=True,
        conv_type='2plus1d',
151
        use_external_states=True,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
152
153
154
    )
    inputs = tf.ones([1, 5, 128, 128, 3])

155
156
    init_states = backbone.init_states(tf.shape(inputs))
    expected_endpoints, _ = backbone({**init_states, 'image': inputs})
Dan Kondratyuk's avatar
Dan Kondratyuk committed
157
158
159

    frames = tf.split(inputs, inputs.shape[1], axis=1)

160
    states = init_states
Dan Kondratyuk's avatar
Dan Kondratyuk committed
161
    for frame in frames:
162
      output, states = backbone({**states, 'image': frame})
Dan Kondratyuk's avatar
Dan Kondratyuk committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    predicted_endpoints = output

    predicted = predicted_endpoints['head']

    # The expected final output is simply the mean across frames
    expected = expected_endpoints['head']
    expected = tf.reduce_mean(expected, 1, keepdims=True)

    self.assertEqual(predicted.shape, expected.shape)
    self.assertAllClose(predicted, expected, 1e-5, 1e-5)

  def test_movinet_3d_2plus1d_stream(self):
    tf.keras.backend.set_image_data_format('channels_last')

177
    backbone = movinet.Movinet(
Dan Kondratyuk's avatar
Dan Kondratyuk committed
178
179
180
        model_id='a0',
        causal=True,
        conv_type='3d_2plus1d',
181
        use_external_states=True,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
182
183
184
    )
    inputs = tf.ones([1, 5, 128, 128, 3])

185
186
    init_states = backbone.init_states(tf.shape(inputs))
    expected_endpoints, _ = backbone({**init_states, 'image': inputs})
Dan Kondratyuk's avatar
Dan Kondratyuk committed
187
188
189

    frames = tf.split(inputs, inputs.shape[1], axis=1)

190
    states = init_states
Dan Kondratyuk's avatar
Dan Kondratyuk committed
191
    for frame in frames:
192
      output, states = backbone({**states, 'image': frame})
Dan Kondratyuk's avatar
Dan Kondratyuk committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    predicted_endpoints = output

    predicted = predicted_endpoints['head']

    # The expected final output is simply the mean across frames
    expected = expected_endpoints['head']
    expected = tf.reduce_mean(expected, 1, keepdims=True)

    self.assertEqual(predicted.shape, expected.shape)
    self.assertAllClose(predicted, expected, 1e-5, 1e-5)

  def test_serialize_deserialize(self):
    # Create a network object that sets all of its config options.
    kwargs = dict(
        model_id='a0',
        causal=True,
        use_positional_encoding=True,
210
        use_external_states=True,
Dan Kondratyuk's avatar
Dan Kondratyuk committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
    )
    network = movinet.Movinet(**kwargs)

    # Create another network object from the first object's config.
    new_network = movinet.Movinet.from_config(network.get_config())

    # Validate that the config can be forced to JSON.
    _ = new_network.to_json()

    # If the serialization was successful, the new config should match the old.
    self.assertAllEqual(network.get_config(), new_network.get_config())


if __name__ == '__main__':
  tf.test.main()