progressive_translation_test.py 5.75 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for google.nlp.progressive_translation."""

import os
from absl.testing import parameterized
import tensorflow as tf

from sentencepiece import SentencePieceTrainer
from tensorflow.python.distribute import combinations
from tensorflow.python.distribute import strategy_combinations
from official.core import config_definitions as cfg
from official.modeling.progressive import trainer as prog_trainer_lib
from official.nlp.data import wmt_dataloader
from official.nlp.tasks import progressive_translation
from official.nlp.tasks import translation


def all_strategy_combinations():
  return combinations.combine(
      distribution=[
          strategy_combinations.default_strategy,
          strategy_combinations.cloud_tpu_strategy,
          strategy_combinations.one_device_strategy_gpu,
      ],)


def _generate_line_file(filepath, lines):
  with tf.io.gfile.GFile(filepath, "w") as f:
    for l in lines:
      f.write("{}\n".format(l))


def _generate_record_file(filepath, src_lines, tgt_lines):
  writer = tf.io.TFRecordWriter(filepath)
  for src, tgt in zip(src_lines, tgt_lines):
    example = tf.train.Example(
        features=tf.train.Features(
            feature={
                "en": tf.train.Feature(
                    bytes_list=tf.train.BytesList(
                        value=[src.encode()])),
                "reverse_en": tf.train.Feature(
                    bytes_list=tf.train.BytesList(
                        value=[tgt.encode()])),
            }))
    writer.write(example.SerializeToString())
  writer.close()


def _train_sentencepiece(input_path, vocab_size, model_path, eos_id=1):
  argstr = " ".join([
      f"--input={input_path}", f"--vocab_size={vocab_size}",
      "--character_coverage=0.995",
      f"--model_prefix={model_path}", "--model_type=bpe",
      "--bos_id=-1", "--pad_id=0", f"--eos_id={eos_id}", "--unk_id=2"
  ])
  SentencePieceTrainer.Train(argstr)


class ProgressiveTranslationTest(tf.test.TestCase, parameterized.TestCase):

  def setUp(self):
    super(ProgressiveTranslationTest, self).setUp()
    self._temp_dir = self.get_temp_dir()
    src_lines = ["abc ede fg", "bbcd ef a g", "de f a a g"]
    tgt_lines = ["dd cc a ef  g", "bcd ef a g", "gef cd ba"]
    self._record_input_path = os.path.join(self._temp_dir, "train.record")
    _generate_record_file(self._record_input_path, src_lines, tgt_lines)
    self._sentencepeice_input_path = os.path.join(self._temp_dir, "inputs.txt")
    _generate_line_file(self._sentencepeice_input_path, src_lines + tgt_lines)
    sentencepeice_model_prefix = os.path.join(self._temp_dir, "sp")
    _train_sentencepiece(self._sentencepeice_input_path, 11,
                         sentencepeice_model_prefix)
    self._sentencepeice_model_path = "{}.model".format(
        sentencepeice_model_prefix)
    encdecoder = translation.EncDecoder(
        num_attention_heads=2, intermediate_size=8)
    self.task_config = progressive_translation.ProgTranslationConfig(
        model=translation.ModelConfig(
            encoder=encdecoder,
            decoder=encdecoder,
            embedding_width=8,
            padded_decode=True,
            decode_max_length=100),
        train_data=wmt_dataloader.WMTDataConfig(
            input_path=self._record_input_path,
            is_training=True,
            global_batch_size=24,
            static_batch=True,
            src_lang="en",
            tgt_lang="reverse_en",
            max_seq_length=12),
        validation_data=wmt_dataloader.WMTDataConfig(
            input_path=self._record_input_path,
            is_training=False,
            global_batch_size=2,
            static_batch=True,
            src_lang="en",
            tgt_lang="reverse_en",
            max_seq_length=12),
        sentencepiece_model_path=self._sentencepeice_model_path,
        stage_list=[
            progressive_translation.StackingStageConfig(
                num_encoder_layers=1, num_decoder_layers=1, num_steps=4),
            progressive_translation.StackingStageConfig(
                num_encoder_layers=2, num_decoder_layers=1, num_steps=8),
            ],
        )
    self.exp_config = cfg.ExperimentConfig(
        task=self.task_config,
        trainer=prog_trainer_lib.ProgressiveTrainerConfig())

  @combinations.generate(all_strategy_combinations())
  def test_num_stages(self, distribution):
    with distribution.scope():
      prog_translation = progressive_translation.ProgressiveTranslationTask(
          self.task_config)
      self.assertEqual(prog_translation.num_stages(), 2)
      self.assertEqual(prog_translation.num_steps(0), 4)
      self.assertEqual(prog_translation.num_steps(1), 8)

  @combinations.generate(all_strategy_combinations())
  def test_weight_copying(self, distribution):
    with distribution.scope():
      prog_translation = progressive_translation.ProgressiveTranslationTask(
          self.task_config)
      old_model = prog_translation.get_model(stage_id=0)
      for w in old_model.trainable_weights:
        w.assign(tf.zeros_like(w) + 0.12345)
      new_model = prog_translation.get_model(stage_id=1, old_model=old_model)
      for w in new_model.trainable_weights:
        self.assertAllClose(w, tf.zeros_like(w) + 0.12345)


if __name__ == "__main__":
  tf.test.main()