progressive_translation.py 8.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Translation task with progressive training."""

from typing import List
# Import libraries
from absl import logging
import dataclasses
import orbit
import tensorflow as tf

from official.core import config_definitions as cfg
from official.core import task_factory
from official.modeling import optimization
from official.modeling.hyperparams import base_config
from official.modeling.progressive import policies
from official.nlp.modeling import models
from official.nlp.tasks import translation


@dataclasses.dataclass
class StackingStageConfig(base_config.Config):
  num_encoder_layers: int = 0
  num_decoder_layers: int = 0
  num_steps: int = 0
  warmup_steps: int = 10000
  initial_learning_rate: float = 0.0625
  power: float = -0.5


@dataclasses.dataclass
class ProgTranslationConfig(translation.TranslationConfig):
  """The progressive model config."""
  model: translation.ModelConfig = translation.ModelConfig(
      encoder=translation.EncDecoder(
          num_attention_heads=16, intermediate_size=4096),
      decoder=translation.EncDecoder(
          num_attention_heads=16, intermediate_size=4096),
      embedding_width=1024,
      padded_decode=True,
      decode_max_length=100)
  optimizer_config: optimization.OptimizationConfig = (
      optimization.OptimizationConfig({
          'optimizer': {
              'type': 'adam',
              'adam': {
                  'beta_2': 0.997,
                  'epsilon': 1e-9,
              },
          },
          'learning_rate': {
              'type': 'power',
              'power': {
                  'initial_learning_rate': 0.0625,
                  'power': -0.5,
              }
          },
          'warmup': {
              'type': 'linear',
              'linear': {
                  'warmup_steps': 16000,
                  'warmup_learning_rate': 0.0
              }
          }
      }))

  stage_list: List[StackingStageConfig] = dataclasses.field(
      default_factory=lambda: [  # pylint: disable=g-long-lambda
          StackingStageConfig(num_encoder_layers=3,
                              num_decoder_layers=3,
                              num_steps=20000,
                              warmup_steps=5000,
                              initial_learning_rate=0.0625),
          StackingStageConfig(num_encoder_layers=6,
                              num_decoder_layers=6,
                              num_steps=20000,
                              warmup_steps=5000,
                              initial_learning_rate=0.0625),
          StackingStageConfig(num_encoder_layers=12,
                              num_decoder_layers=12,
                              num_steps=100000,
                              warmup_steps=5000,
                              initial_learning_rate=0.0625)])


@task_factory.register_task_cls(ProgTranslationConfig)
class ProgressiveTranslationTask(policies.ProgressivePolicy,
                                 translation.TranslationTask):
  """Masked Language Model that supports progressive training.

  Inherate from the TranslationTask class to build model datasets etc.
  """

  def __init__(self, params: cfg.TaskConfig, logging_dir: str = None):
    translation.TranslationTask.__init__(
        self, params=params, logging_dir=logging_dir)
    self._model_config = params.model
    self._optimizer_config = params.optimizer_config
    self._the_only_train_dataset = None
    self._the_only_eval_dataset = None
    policies.ProgressivePolicy.__init__(self)

  # Override
  def num_stages(self):
    return len(self.task_config.stage_list)

  # Override
  def num_steps(self, stage_id):
    return self.task_config.stage_list[stage_id].num_steps

  # Override
  def get_model(self, stage_id, old_model=None):
    """Build model for each stage."""
    num_encoder_layers = (
        self.task_config.stage_list[stage_id].num_encoder_layers)
    num_decoder_layers = (
        self.task_config.stage_list[stage_id].num_decoder_layers)
    params = self._model_config.replace(
        encoder={'num_layers': num_encoder_layers},
        decoder={'num_layers': num_decoder_layers})
    model = self.build_model(params)

    # Run the model once, to make sure that all layers are built.
    # Otherwise, not all weights will be copied.
    inputs = next(tf.nest.map_structure(
        iter, self.build_inputs(self.task_config.train_data)))
    model(inputs, training=True)

    if stage_id > 0 and old_model is not None:
      logging.info('Stage %d copying weights.', stage_id)
      self._copy_weights_to_new_model(old_model=old_model,
                                      new_model=model)
    return model

  # Override
  def build_model(self, params) -> tf.keras.Model:
    """Creates model architecture."""
    model_cfg = params or self.task_config.model
    encoder_kwargs = model_cfg.encoder.as_dict()
    encoder_layer = models.TransformerEncoder(**encoder_kwargs)
    decoder_kwargs = model_cfg.decoder.as_dict()
    decoder_layer = models.TransformerDecoder(**decoder_kwargs)

    return models.Seq2SeqTransformer(
        vocab_size=self._vocab_size,
        embedding_width=model_cfg.embedding_width,
        dropout_rate=model_cfg.dropout_rate,
        padded_decode=model_cfg.padded_decode,
        decode_max_length=model_cfg.decode_max_length,
        beam_size=model_cfg.beam_size,
        alpha=model_cfg.alpha,
        encoder_layer=encoder_layer,
        decoder_layer=decoder_layer)

  # Override
  def get_optimizer(self, stage_id):
    """Build optimizer for each stage."""
    params = self._optimizer_config.replace(
        warmup={
            'linear':
                {'warmup_steps':
                     self.task_config.stage_list[stage_id].warmup_steps
                 },
        },
        learning_rate={
            'power':
                {'initial_learning_rate':
                     self.task_config.stage_list[stage_id].initial_learning_rate
                 },
        },
    )
    opt_factory = optimization.OptimizerFactory(params)
    optimizer = opt_factory.build_optimizer(opt_factory.build_learning_rate())

    return optimizer

  # overrides policies.ProgressivePolicy
  def get_train_dataset(self, stage_id):
    del stage_id
    if self._the_only_train_dataset is None:
      strategy = tf.distribute.get_strategy()
      self._the_only_train_dataset = orbit.utils.make_distributed_dataset(
          strategy,
          self.build_inputs,
          self.task_config.train_data)
    return self._the_only_train_dataset

  # overrides policies.ProgressivePolicy
  def get_eval_dataset(self, stage_id):
    del stage_id
    if self._the_only_eval_dataset is None:
      strategy = tf.distribute.get_strategy()
      self._the_only_eval_dataset = orbit.utils.make_distributed_dataset(
          strategy,
          self.build_inputs,
          self.task_config.validation_data)
    return self._the_only_eval_dataset

  def _copy_weights_to_new_model(self, old_model, new_model):
    """Copy model weights from the previous stage to the next.

    Args:
      old_model: nlp.modeling.models.bert_pretrainer.BertPretrainerV2. Model of
        the previous stage.
      new_model: nlp.modeling.models.bert_pretrainer.BertPretrainerV2. Model of
        the next stage.
    """
    new_model.embedding_lookup.set_weights(
        old_model.embedding_lookup.get_weights())
    new_model.position_embedding.set_weights(
        old_model.position_embedding.get_weights())

    new_model.encoder_layer.output_normalization.set_weights(
        old_model.encoder_layer.output_normalization.get_weights())
    new_model.decoder_layer.output_normalization.set_weights(
        old_model.decoder_layer.output_normalization.get_weights())

    old_layer_group = old_model.encoder_layer.encoder_layers
    new_layer_group = new_model.encoder_layer.encoder_layers
    for new_layer_idx in range(len(new_layer_group)):
      old_layer_idx = new_layer_idx % len(old_layer_group)
      new_layer_group[new_layer_idx].set_weights(
          old_layer_group[old_layer_idx].get_weights())

    old_layer_group = old_model.decoder_layer.decoder_layers
    new_layer_group = new_model.decoder_layer.decoder_layers
    for new_layer_idx in range(len(new_layer_group)):
      old_layer_idx = new_layer_idx % len(old_layer_group)
      new_layer_group[new_layer_idx].set_weights(
          old_layer_group[old_layer_idx].get_weights())