bert_squad_benchmark.py 21.4 KB
Newer Older
davidmochen's avatar
davidmochen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes BERT SQuAD benchmarks and accuracy tests."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import os
import time

# pylint: disable=g-bad-import-order
from absl import flags
from absl.testing import flagsaver
28
import tensorflow as tf
davidmochen's avatar
davidmochen committed
29
30
# pylint: enable=g-bad-import-order

31
32
from official.benchmark import bert_benchmark_utils as benchmark_utils
from official.benchmark import squad_evaluate_v1_1
33
from official.nlp.bert import run_squad
davidmochen's avatar
davidmochen committed
34
from official.utils.misc import distribution_utils
35
from official.utils.misc import keras_utils
36
37
from official.utils.testing import benchmark_wrappers

davidmochen's avatar
davidmochen committed
38
39

# pylint: disable=line-too-long
David Chen's avatar
David Chen committed
40
PRETRAINED_CHECKPOINT_PATH = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16/bert_model.ckpt'
davidmochen's avatar
davidmochen committed
41
42
SQUAD_TRAIN_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_train.tf_record'
SQUAD_PREDICT_FILE = 'gs://tf-perfzero-data/bert/squad/dev-v1.1.json'
David Chen's avatar
David Chen committed
43
SQUAD_VOCAB_FILE = 'gs://tf-perfzero-data/bert/squad/vocab.txt'
David Chen's avatar
David Chen committed
44
SQUAD_MEDIUM_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_medium_meta_data'
45
SQUAD_FULL_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_full_meta_data'
David Chen's avatar
David Chen committed
46
MODEL_CONFIG_FILE_PATH = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16/bert_config.json'
davidmochen's avatar
davidmochen committed
47
48
# pylint: enable=line-too-long

David Chen's avatar
David Chen committed
49
TMP_DIR = os.getenv('TMPDIR')
davidmochen's avatar
davidmochen committed
50
51
52
53
54
55
FLAGS = flags.FLAGS


class BertSquadBenchmarkBase(benchmark_utils.BertBenchmarkBase):
  """Base class to hold methods common to test classes in the module."""

David Chen's avatar
David Chen committed
56
57
58
59
  def __init__(self, output_dir=None, tpu=None):
    super(BertSquadBenchmarkBase, self).__init__(output_dir=output_dir)
    self.tpu = tpu

60
61
  def _read_training_summary_from_file(self):
    """Reads the training summary from a file."""
62
63
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
64
65
    with tf.io.gfile.GFile(summary_path, 'rb') as reader:
      return json.loads(reader.read().decode('utf-8'))
66

67
68
69
70
  def _read_input_meta_data_from_file(self):
    """Reads the input metadata from a file."""
    with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
      return json.loads(reader.read().decode('utf-8'))
71

72
73
  def _read_predictions_dataset_from_file(self):
    """Reads the predictions dataset from a file."""
74
75
    with tf.io.gfile.GFile(SQUAD_PREDICT_FILE, 'r') as reader:
      dataset_json = json.load(reader)
76
      return dataset_json['data']
77

78
79
80
  def _read_predictions_from_file(self):
    """Reads the predictions from a file."""
    predictions_file = os.path.join(FLAGS.model_dir, 'predictions.json')
81
    with tf.io.gfile.GFile(predictions_file, 'r') as reader:
82
      return json.load(reader)
83

84
  def _get_distribution_strategy(self, use_ds=True):
85
    """Gets the distribution strategy."""
David Chen's avatar
David Chen committed
86
87
88
89
90
91
92
    if self.tpu:
      return distribution_utils.get_distribution_strategy(
          distribution_strategy='tpu', tpu_address=self.tpu)
    else:
      return distribution_utils.get_distribution_strategy(
          distribution_strategy='mirrored' if use_ds else 'off',
          num_gpus=self.num_gpus)
93

94
95
96
97
98
99
100
101
102
103
104
  def _init_gpu_and_data_threads(self):
    """Set env variables before any TF calls."""
    if FLAGS.tf_gpu_thread_mode:
      keras_utils.set_gpu_thread_mode_and_count(
          per_gpu_thread_count=FLAGS.per_gpu_thread_count,
          gpu_thread_mode=FLAGS.tf_gpu_thread_mode,
          num_gpus=self.num_gpus,
          datasets_num_private_threads=FLAGS.datasets_num_private_threads)



davidmochen's avatar
davidmochen committed
105
  @flagsaver.flagsaver
106
  def _train_squad(self, use_ds=True, run_eagerly=False):
107
    """Runs BERT SQuAD training."""
David Chen's avatar
David Chen committed
108
    assert tf.version.VERSION.startswith('2.')
109
    self._init_gpu_and_data_threads()
110
    input_meta_data = self._read_input_meta_data_from_file()
111
    strategy = self._get_distribution_strategy(use_ds)
davidmochen's avatar
davidmochen committed
112
113
114
115

    run_squad.train_squad(
        strategy=strategy,
        input_meta_data=input_meta_data,
116
        run_eagerly=run_eagerly,
davidmochen's avatar
davidmochen committed
117
        custom_callbacks=[self.timer_callback])
118
119

  @flagsaver.flagsaver
120
  def _evaluate_squad(self, use_ds=True):
121
    """Runs BERT SQuAD evaluation."""
David Chen's avatar
David Chen committed
122
    assert tf.version.VERSION.startswith('2.')
123
    self._init_gpu_and_data_threads()
124
    input_meta_data = self._read_input_meta_data_from_file()
125
    strategy = self._get_distribution_strategy(use_ds)
126

127
    run_squad.predict_squad(strategy=strategy, input_meta_data=input_meta_data)
128
129
130
131
132

    dataset = self._read_predictions_dataset_from_file()
    predictions = self._read_predictions_from_file()

    eval_metrics = squad_evaluate_v1_1.evaluate(dataset, predictions)
133
134
    # Use F1 score as reported evaluation metric.
    self.eval_metrics = eval_metrics['f1']
davidmochen's avatar
davidmochen committed
135
136


137
class BertSquadBenchmarkReal(BertSquadBenchmarkBase):
davidmochen's avatar
davidmochen committed
138
139
140
141
  """Short benchmark performance tests for BERT SQuAD model.

  Tests BERT SQuAD performance in different GPU configurations.
  The naming convention of below test cases follow
David Chen's avatar
David Chen committed
142
143
  `benchmark_(number of gpus)_gpu` format for GPUs and
  `benchmark_(topology)_tpu` format for TPUs.
davidmochen's avatar
davidmochen committed
144
145
  """

David Chen's avatar
David Chen committed
146
147
  def __init__(self, output_dir=TMP_DIR, tpu=None, **kwargs):
    super(BertSquadBenchmarkReal, self).__init__(output_dir=output_dir, tpu=tpu)
davidmochen's avatar
davidmochen committed
148
149

  def _setup(self):
150
151
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadBenchmarkReal, self)._setup()
davidmochen's avatar
davidmochen committed
152
153
154
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
David Chen's avatar
David Chen committed
155
    FLAGS.input_meta_data_path = SQUAD_MEDIUM_INPUT_META_DATA_PATH
davidmochen's avatar
davidmochen committed
156
157
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.num_train_epochs = 1
158
    FLAGS.steps_per_loop = 1
davidmochen's avatar
davidmochen committed
159

160
  @benchmark_wrappers.enable_runtime_flags
161
162
163
  def _run_and_report_benchmark(self,
                                use_ds=True,
                                run_eagerly=False):
164
    """Runs the benchmark and reports various metrics."""
165
    start_time_sec = time.time()
166
    self._train_squad(use_ds=use_ds, run_eagerly=run_eagerly)
167
168
169
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
David Chen's avatar
David Chen committed
170
    summary['start_time_sec'] = start_time_sec
171
172
173
174
175
176

    super(BertSquadBenchmarkReal, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=0,
        max_accuracy=1)
davidmochen's avatar
davidmochen committed
177
178

  def benchmark_1_gpu(self):
179
    """Tests BERT SQuAD model performance with 1 GPU."""
davidmochen's avatar
davidmochen committed
180
181
182
183

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad')
184
    FLAGS.train_batch_size = 4
davidmochen's avatar
davidmochen committed
185

186
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
187

188
189
190
191
192
193
  def benchmark_1_gpu_xla(self):
    """Tests BERT SQuAD model performance with 1 GPU with XLA."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_xla_squad')
194
195
    # XLA runs out of memory when running with batch size 4.
    FLAGS.train_batch_size = 3
196
    FLAGS.enable_xla = True
197

198
    self._run_and_report_benchmark()
199
200
201
202
203
204
205

  def benchmark_1_gpu_no_dist_strat(self):
    """Tests BERT SQuAD model performance with 1 GPU without DS."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat_squad')
206
    FLAGS.train_batch_size = 4
207
208
209
210
211
212
213
214
215
216

    self._run_and_report_benchmark(use_ds=False)

  def benchmark_1_gpu_eager_no_dist_strat(self):
    """Tests BERT SQuAD model performance with 1 GPU with eager execution."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_eager_no_dist_strat_squad')
217
    FLAGS.train_batch_size = 4
218
219
220

    self._run_and_report_benchmark(use_ds=False, run_eagerly=True)

davidmochen's avatar
davidmochen committed
221
  def benchmark_2_gpu(self):
222
    """Tests BERT SQuAD model performance with 2 GPUs."""
davidmochen's avatar
davidmochen committed
223
224
225
226

    self._setup()
    self.num_gpus = 2
    FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu_squad')
227
    FLAGS.train_batch_size = 8
davidmochen's avatar
davidmochen committed
228

229
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
230
231

  def benchmark_4_gpu(self):
232
    """Tests BERT SQuAD model performance with 4 GPUs."""
davidmochen's avatar
davidmochen committed
233
234
235
236

    self._setup()
    self.num_gpus = 4
    FLAGS.model_dir = self._get_model_dir('benchmark_4_gpu_squad')
237
    FLAGS.train_batch_size = 16
davidmochen's avatar
davidmochen committed
238

239
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
240
241

  def benchmark_8_gpu(self):
242
243
244
245
246
    """Tests BERT SQuAD model performance with 8 GPUs."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad')
247
    FLAGS.train_batch_size = 32
248
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
249

250
    self._run_and_report_benchmark()
251

252
253
254
255
256
257
258
259
260
261
262
263
  def benchmark_1_gpu_fp16(self):
    """Tests BERT SQuAD model performance with 1 GPU and FP16."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_fp16')
    FLAGS.train_batch_size = 4
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

264
265
266
267
268
269
270
271
272
273
274
275
276
  def benchmark_1_gpu_xla_fp16(self):
    """Tests BERT SQuAD model performance with 1 GPU with XLA and FP16."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_xla_squad_fp16')
    FLAGS.train_batch_size = 4
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
  def benchmark_2_gpu_fp16(self):
    """Tests BERT SQuAD model performance with 2 GPUs and FP16."""

    self._setup()
    self.num_gpus = 2
    FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu_squad_fp16')
    FLAGS.train_batch_size = 8
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

  def benchmark_4_gpu_fp16(self):
    """Tests BERT SQuAD model performance with 4 GPUs and FP16."""

    self._setup()
    self.num_gpus = 4
    FLAGS.model_dir = self._get_model_dir('benchmark_4_gpu_squad_fp16')
    FLAGS.train_batch_size = 16
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

  def benchmark_8_gpu_fp16(self):
    """Tests BERT SQuAD model performance with 8 GPUs."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
    FLAGS.train_batch_size = 32
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'
310
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
311
312
313

    self._run_and_report_benchmark()

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
314
315
316
317
318
319
320
321
322
323
324
325
326
  def benchmark_8_gpu_xla_fp16(self):
    """Tests BERT SQuAD model performance with 8 GPUs with XLA."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
    FLAGS.train_batch_size = 32
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
  def benchmark_1_gpu_amp(self):
    """Tests BERT SQuAD model performance with 1 GPU with automatic mixed precision."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp_squad')
    FLAGS.train_batch_size = 4
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'

    self._run_and_report_benchmark()

  def benchmark_4_gpu_amp(self):
    """Tests BERT SQuAD model performance with 1 GPU with automatic mixed precision."""

    self._setup()
    self.num_gpus = 4
    FLAGS.model_dir = self._get_model_dir('benchmark_4_gpu_amp_squad')
    FLAGS.train_batch_size = 16
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'

    self._run_and_report_benchmark()

  def benchmark_8_gpu_amp(self):
    """Tests BERT SQuAD model performance with 1 GPU with automatic mixed precision."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp_squad')
    FLAGS.train_batch_size = 32
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
360
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
361
362

    self._run_and_report_benchmark()
363

David Chen's avatar
David Chen committed
364
365
366
367
368
369
370
371
372
  def benchmark_2x2_tpu(self):
    """Tests BERT SQuAD model performance with 2x2 TPU."""

    self._setup()
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu')
    FLAGS.train_batch_size = 48

    self._run_and_report_benchmark()

373
374
375
376
377

class BertSquadAccuracy(BertSquadBenchmarkBase):
  """Short accuracy test for BERT SQuAD model.

  Tests BERT SQuAD accuracy. The naming convention of below test cases follow
David Chen's avatar
David Chen committed
378
379
  `benchmark_(number of gpus)_gpu` format for GPUs and
  `benchmark_(topology)_tpu` format for TPUs.
380
381
  """

David Chen's avatar
David Chen committed
382
383
  def __init__(self, output_dir=None, tpu=None, **kwargs):
    super(BertSquadAccuracy, self).__init__(output_dir=output_dir, tpu=tpu)
384
385
386
387
388
389
390
391
392
393
394

  def _setup(self):
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadAccuracy, self)._setup()
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
    FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
    FLAGS.num_train_epochs = 2
395
    FLAGS.steps_per_loop = 1
396

397
  @benchmark_wrappers.enable_runtime_flags
398
399
400
  def _run_and_report_benchmark(self,
                                use_ds=True,
                                run_eagerly=False):
401
    """Runs the benchmark and reports various metrics."""
402
    start_time_sec = time.time()
403
    self._train_squad(use_ds=use_ds, run_eagerly=run_eagerly)
404
405
406
407
408
409
410
411
412
    self._evaluate_squad()
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
    summary['eval_metrics'] = self.eval_metrics

    super(BertSquadAccuracy, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
413
        min_accuracy=0.900,
414
        max_accuracy=0.920)
415

416
417
418
419
420
421
422
423
424
425
  def benchmark_1_gpu_eager(self):
    """Tests BERT SQuAD model accuracy with 1 GPU with eager execution."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_eager')
    FLAGS.train_batch_size = 4

    self._run_and_report_benchmark(use_ds=False, run_eagerly=True)

426
427
  def benchmark_8_gpu(self):
    """Tests BERT SQuAD model accuracy with 8 GPUs."""
davidmochen's avatar
davidmochen committed
428
429
430
431

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad')
432
    FLAGS.train_batch_size = 24
433
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
davidmochen's avatar
davidmochen committed
434

435
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
436

437
438
439
440
441
442
443
444
445
  def benchmark_8_gpu_fp16(self):
    """Tests BERT SQuAD model accuracy with 8 GPUs and FP16."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
    FLAGS.train_batch_size = 32
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'
446
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
447
448
449

    self._run_and_report_benchmark()

450
451
452
453
454
455
456
  def benchmark_8_gpu_xla(self):
    """Tests BERT SQuAD model accuracy with 8 GPUs."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_xla')
    FLAGS.train_batch_size = 32
457
    FLAGS.enable_xla = True
458
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
459

460
    self._run_and_report_benchmark()
461

David Chen's avatar
David Chen committed
462
463
464
465
466
467
468
469
470
  def benchmark_2x2_tpu(self):
    """Tests BERT SQuAD model accuracy with 2x2 TPU."""

    self._setup()
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu')
    FLAGS.train_batch_size = 48

    self._run_and_report_benchmark()

davidmochen's avatar
davidmochen committed
471

472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
class BertSquadMultiWorkerAccuracy(BertSquadBenchmarkBase):
  """BERT SQuAD distributed accuracy tests with multiple workers."""

  def __init__(self, output_dir=None, tpu=None, **kwargs):
    super(BertSquadMultiWorkerAccuracy, self).__init__(
        output_dir=output_dir, tpu=tpu)

  def _setup(self):
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadMultiWorkerAccuracy, self)._setup()
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
    FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
    FLAGS.num_train_epochs = 2
    FLAGS.steps_per_loop = 1

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(self,
                                use_ds=True,
                                run_eagerly=False):
    """Runs the benchmark and reports various metrics."""
    start_time_sec = time.time()
    self._train_squad(use_ds=use_ds, run_eagerly=run_eagerly)
    self._evaluate_squad()
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
    summary['eval_metrics'] = self.eval_metrics

    super(BertSquadMultiWorkerAccuracy, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=0.900,
        max_accuracy=0.920)

  def _benchmark_common(self, num_workers, all_reduce_alg):
    """Common to all benchmarks in this class."""
    self._setup()

    num_gpus = 8
    FLAGS.num_gpus = num_gpus
    FLAGS.dtype = 'fp16'
    FLAGS.enable_xla = False
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 32
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_{}_worker_fp16_{}_tweaked'.format(
            num_workers, all_reduce_alg))
    FLAGS.train_batch_size = 4 * num_gpus * num_workers
    FLAGS.all_reduce_alg = all_reduce_alg

    self._run_and_report_benchmark()

Yanhui Liang's avatar
Yanhui Liang committed
529
530
531
532
533
534
535
536
  def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self):
    """8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
    self._benchmark_common(num_workers=2, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
    self._benchmark_common(num_workers=2, all_reduce_alg='nccl')

537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
  def benchmark_8_gpu_8_workers_fp16_ring_tweaked(self):
    """8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
    self._benchmark_common(num_workers=8, all_reduce_alg='ring')

  def benchmark_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
    self._benchmark_common(num_workers=8, all_reduce_alg='nccl')


class BertSquadMultiWorkerBenchmark(BertSquadBenchmarkBase):
  """BERT SQuAD distributed benchmark tests with multiple workers."""

  def __init__(self, output_dir=TMP_DIR, tpu=None, **kwargs):
    super(BertSquadMultiWorkerBenchmark, self).__init__(
        output_dir=output_dir, tpu=tpu)

  def _setup(self):
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadMultiWorkerBenchmark, self)._setup()
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
    FLAGS.input_meta_data_path = SQUAD_MEDIUM_INPUT_META_DATA_PATH
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.num_train_epochs = 1
    FLAGS.steps_per_loop = 1

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(self,
                                use_ds=True,
                                run_eagerly=False):
    """Runs the benchmark and reports various metrics."""
    start_time_sec = time.time()
    self._train_squad(use_ds=use_ds, run_eagerly=run_eagerly)
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
    summary['start_time_sec'] = start_time_sec

    super(BertSquadMultiWorkerBenchmark, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=0,
        max_accuracy=1)

  def _benchmark_common(self, num_workers, all_reduce_alg):
    """Common to all benchmarks in this class."""
    self._setup()

    num_gpus = 8
    FLAGS.num_gpus = num_gpus
    FLAGS.dtype = 'fp16'
    FLAGS.enable_xla = False
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 32
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_{}_worker_fp16_{}_tweaked'.format(
            num_workers, all_reduce_alg))
    FLAGS.train_batch_size = 4 * num_gpus * num_workers
    FLAGS.all_reduce_alg = all_reduce_alg

    self._run_and_report_benchmark()

  def benchmark_8_gpu_1_worker_fp16_ring_tweaked(self):
    """8 GPUs per worker, 1 worker, fp16, ring all-reduce."""
    self._benchmark_common(num_workers=1, all_reduce_alg='ring')

  def benchmark_8_gpu_1_worker_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 1 worker, fp16, nccl all-reduce."""
    self._benchmark_common(num_workers=1, all_reduce_alg='nccl')

  def benchmark_8_gpu_2_workers_fp16_ring_tweaked(self):
    """8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
    self._benchmark_common(num_workers=2, all_reduce_alg='ring')

  def benchmark_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
    self._benchmark_common(num_workers=2, all_reduce_alg='nccl')

  def benchmark_8_gpu_8_workers_fp16_ring_tweaked(self):
    """8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
    self._benchmark_common(num_workers=8, all_reduce_alg='ring')

  def benchmark_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
    self._benchmark_common(num_workers=8, all_reduce_alg='nccl')


davidmochen's avatar
davidmochen committed
626
627
if __name__ == '__main__':
  tf.test.main()