compute_bleu.py 5.01 KB
Newer Older
Katherine Wu's avatar
Katherine Wu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Script to compute official BLEU score.

Source:
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/bleu_hook.py
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import re
import sys
import unicodedata

# pylint: disable=g-bad-import-order
import six
31
32
from absl import app as absl_app
from absl import flags
Katherine Wu's avatar
Katherine Wu committed
33
34
35
36
import tensorflow as tf
# pylint: enable=g-bad-import-order

from official.transformer.utils import metrics
37
from official.transformer.utils import tokenizer
38
from official.utils.flags import core as flags_core
Katherine Wu's avatar
Katherine Wu committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89


class UnicodeRegex(object):
  """Ad-hoc hack to recognize all punctuation and symbols."""

  def __init__(self):
    punctuation = self.property_chars("P")
    self.nondigit_punct_re = re.compile(r"([^\d])([" + punctuation + r"])")
    self.punct_nondigit_re = re.compile(r"([" + punctuation + r"])([^\d])")
    self.symbol_re = re.compile("([" + self.property_chars("S") + "])")

  def property_chars(self, prefix):
    return "".join(six.unichr(x) for x in range(sys.maxunicode)
                   if unicodedata.category(six.unichr(x)).startswith(prefix))


uregex = UnicodeRegex()


def bleu_tokenize(string):
  r"""Tokenize a string following the official BLEU implementation.

  See https://github.com/moses-smt/mosesdecoder/'
           'blob/master/scripts/generic/mteval-v14.pl#L954-L983
  In our case, the input string is expected to be just one line
  and no HTML entities de-escaping is needed.
  So we just tokenize on punctuation and symbols,
  except when a punctuation is preceded and followed by a digit
  (e.g. a comma/dot as a thousand/decimal separator).

  Note that a numer (e.g. a year) followed by a dot at the end of sentence
  is NOT tokenized,
  i.e. the dot stays with the number because `s/(\p{P})(\P{N})/ $1 $2/g`
  does not match this case (unless we add a space after each sentence).
  However, this error is already in the original mteval-v14.pl
  and we want to be consistent with it.

  Args:
    string: the input string

  Returns:
    a list of tokens
  """
  string = uregex.nondigit_punct_re.sub(r"\1 \2 ", string)
  string = uregex.punct_nondigit_re.sub(r" \1 \2", string)
  string = uregex.symbol_re.sub(r" \1 ", string)
  return string.split()


def bleu_wrapper(ref_filename, hyp_filename, case_sensitive=False):
  """Compute BLEU for two files (reference and hypothesis translation)."""
90
91
92
93
  ref_lines = tokenizer.native_to_unicode(
      tf.gfile.Open(ref_filename, "r").read()).split("\n")
  hyp_lines = tokenizer.native_to_unicode(
      tf.gfile.Open(hyp_filename, "r").read()).split("\n")
Katherine Wu's avatar
Katherine Wu committed
94
95
96

  if len(ref_lines) != len(hyp_lines):
    raise ValueError("Reference and translation files have different number of "
97
98
                     "lines. If training only a few steps (100-200), the "
                     "translation may be empty.")
Katherine Wu's avatar
Katherine Wu committed
99
100
101
102
103
104
105
106
107
  if not case_sensitive:
    ref_lines = [x.lower() for x in ref_lines]
    hyp_lines = [x.lower() for x in hyp_lines]
  ref_tokens = [bleu_tokenize(x) for x in ref_lines]
  hyp_tokens = [bleu_tokenize(x) for x in hyp_lines]
  return metrics.compute_bleu(ref_tokens, hyp_tokens) * 100


def main(unused_argv):
108
  if FLAGS.bleu_variant in ("both", "uncased"):
Katherine Wu's avatar
Katherine Wu committed
109
    score = bleu_wrapper(FLAGS.reference, FLAGS.translation, False)
110
    tf.logging.info("Case-insensitive results: %f" % score)
Katherine Wu's avatar
Katherine Wu committed
111

112
  if FLAGS.bleu_variant in ("both", "cased"):
Katherine Wu's avatar
Katherine Wu committed
113
    score = bleu_wrapper(FLAGS.reference, FLAGS.translation, True)
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    tf.logging.info("Case-sensitive results: %f" % score)


def define_compute_bleu_flags():
  """Add flags for computing BLEU score."""
  flags.DEFINE_string(
      name="translation", default=None,
      help=flags_core.help_wrap("File containing translated text."))
  flags.mark_flag_as_required("translation")

  flags.DEFINE_string(
      name="reference", default=None,
      help=flags_core.help_wrap("File containing reference translation."))
  flags.mark_flag_as_required("reference")

  flags.DEFINE_enum(
      name="bleu_variant", short_name="bv", default="both",
      enum_values=["both", "uncased", "cased"], case_sensitive=False,
      help=flags_core.help_wrap(
          "Specify one or more BLEU variants to calculate. Variants: \"cased\""
          ", \"uncased\", or \"both\"."))
Katherine Wu's avatar
Katherine Wu committed
135
136
137


if __name__ == "__main__":
138
139
140
141
  tf.logging.set_verbosity(tf.logging.INFO)
  define_compute_bleu_flags()
  FLAGS = flags.FLAGS
  absl_app.run(main)