evaluator.py 5.78 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Multitask Evaluator implementation.

The evaluator implements the Orbit `AbstractEvaluator` interface.
"""
from typing import Optional, Union
import gin
import orbit
import tensorflow as tf

from official.modeling.multitask import base_model
from official.modeling.multitask import multitask


@gin.configurable
class MultiTaskEvaluator(orbit.AbstractEvaluator):
  """Implements the common trainer shared for TensorFlow models."""

  def __init__(self,
               task: multitask.MultiTask,
               model: Union[tf.keras.Model, base_model.MultiTaskBaseModel],
               global_step: Optional[tf.Variable] = None):
    """Initialize common trainer for TensorFlow models.

    Args:
      task: A multitask.MultiTask instance.
      model: tf.keras.Model instance.
      global_step: the global step variable.
    """
    # Gets the current distribution strategy. If not inside any strategy scope,
    # it gets a single-replica no-op strategy.
    self._strategy = tf.distribute.get_strategy()
    self._task = task
    self._model = model
    self._global_step = global_step or orbit.utils.create_global_step()
    # TODO(hongkuny): Define a more robust way to handle the training/eval
    # checkpoint loading.
    if hasattr(self.model, "checkpoint_items"):
      # Each evaluation task can have different models and load a subset of
      # components from the training checkpoint. This is assuming the
      # checkpoint items are able to load the weights of the evaluation model.
      checkpoint_items = self.model.checkpoint_items
    else:
      # This is assuming the evaluation model is exactly the training model.
      checkpoint_items = dict(model=self.model)
    self._checkpoint = tf.train.Checkpoint(
        global_step=self.global_step,
        **checkpoint_items)

    self._validation_losses = None
    self._validation_metrics = None

    # Builds per-task datasets.
    self.eval_datasets = {}
    for name, task in self.task.tasks.items():
      self.eval_datasets[name] = orbit.utils.make_distributed_dataset(
          self.strategy, task.build_inputs, task.task_config.validation_data)

    # Builds per-task validation loops.
    def get_function(task_name, task):

      task_metrics = self.validation_metrics[task_name]
      task_loss = self.validation_losses[task_name]
      if isinstance(self.model, base_model.MultiTaskBaseModel):
        model = self.model.sub_tasks[task_name]
      else:
        model = self.model

      def step_fn(inputs):
        logs = task.validation_step(inputs, model=model, metrics=task_metrics)
        task_loss.update_state(logs[task.loss])
        return logs

      @tf.function
      def eval_step_fn(iterator):
        distributed_outputs = self.strategy.run(step_fn, args=(next(iterator),))
        return tf.nest.map_structure(self.strategy.experimental_local_results,
                                     distributed_outputs)

      return orbit.utils.create_loop_fn(eval_step_fn)

    self.task_fns = {
        name: get_function(name, task)
        for name, task in self.task.tasks.items()
    }

  @property
  def strategy(self):
    return self._strategy

  @property
  def task(self):
    return self._task

  @property
  def model(self):
    return self._model

  @property
  def global_step(self):
    return self._global_step

  @property
  def validation_losses(self):
    """Accesses the validation loss metric object."""
    if self._validation_losses is None:
      # Builds the per-task metrics and losses.
      self._validation_losses = {}
      for name in self.task.tasks:
        self._validation_losses[name] = tf.keras.metrics.Mean(
            "validation_loss", dtype=tf.float32)
    return self._validation_losses

  @property
  def validation_metrics(self):
    """Accesses all validation metric metric objects."""
    if self._validation_metrics is None:
      # Builds the per-task metrics and losses.
      self._validation_metrics = {}
      for name, task in self.task.tasks.items():
        self._validation_metrics[name] = task.build_metrics(training=False)
    return self._validation_metrics

  @property
  def checkpoint(self):
    """Accesses the training checkpoint."""
    return self._checkpoint

  def evaluate(self, num_steps: tf.Tensor):
    """Performs evaluation for each `EvalTask`."""
    for metric in self.validation_losses.values():
      metric.reset_states()
    for metrics in self.validation_metrics.values():
      for metric in metrics:
        metric.reset_states()
    results = {}
    eval_iters = tf.nest.map_structure(iter, self.eval_datasets)

    for name, task_eval_loop in self.task_fns.items():
      outputs = None
      eval_iter = eval_iters[name]
      task = self.task.tasks[name]
      task_eval_steps = self.task.task_eval_steps(name) or num_steps
      outputs = task_eval_loop(
          eval_iter,
          task_eval_steps,
          state=outputs,
          reduce_fn=task.aggregate_logs)
      task_metrics = self.validation_metrics[name]
      task_loss = self.validation_losses[name]
      logs = {}
      for metric in task_metrics + [task_loss]:
        logs[metric.name] = metric.result()
      if outputs:
        metrics = task.reduce_aggregated_logs(outputs)
        logs.update(metrics)
      results[name] = logs
    return results