resnet_v1.py 17.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains definitions for the original form of Residual Networks.

The 'v1' residual networks (ResNets) implemented in this module were proposed
by:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
    Deep Residual Learning for Image Recognition. arXiv:1512.03385

Other variants were introduced in:
[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
    Identity Mappings in Deep Residual Networks. arXiv: 1603.05027

The networks defined in this module utilize the bottleneck building block of
[1] with projection shortcuts only for increasing depths. They employ batch
normalization *after* every weight layer. This is the architecture used by
MSRA in the Imagenet and MSCOCO 2016 competition models ResNet-101 and
ResNet-152. See [2; Fig. 1a] for a comparison between the current 'v1'
architecture and the alternative 'v2' architecture of [2] which uses batch
normalization *before* every weight layer in the so-called full pre-activation
units.

Typical use:

   from tensorflow.contrib.slim.nets import resnet_v1

ResNet-101 for image classification into 1000 classes:

   # inputs has shape [batch, 224, 224, 3]
   with slim.arg_scope(resnet_v1.resnet_arg_scope()):
      net, end_points = resnet_v1.resnet_v1_101(inputs, 1000, is_training=False)

ResNet-101 for semantic segmentation into 21 classes:

   # inputs has shape [batch, 513, 513, 3]
   with slim.arg_scope(resnet_v1.resnet_arg_scope()):
      net, end_points = resnet_v1.resnet_v1_101(inputs,
                                                21,
                                                is_training=False,
                                                global_pool=False,
                                                output_stride=16)
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
60
from tensorflow.contrib import slim as contrib_slim
61
62
63
64
65

from nets import resnet_utils


resnet_arg_scope = resnet_utils.resnet_arg_scope
66
slim = contrib_slim
67
68


69
70
71
72
73
74
75
76
77
78
class NoOpScope(object):
  """No-op context manager."""

  def __enter__(self):
    return None

  def __exit__(self, exc_type, exc_value, traceback):
    return False


79
@slim.add_arg_scope
Derek Chow's avatar
Derek Chow committed
80
81
82
83
84
85
86
87
def bottleneck(inputs,
               depth,
               depth_bottleneck,
               stride,
               rate=1,
               outputs_collections=None,
               scope=None,
               use_bounded_activations=False):
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
  """Bottleneck residual unit variant with BN after convolutions.

  This is the original residual unit proposed in [1]. See Fig. 1(a) of [2] for
  its definition. Note that we use here the bottleneck variant which has an
  extra bottleneck layer.

  When putting together two consecutive ResNet blocks that use this unit, one
  should use stride = 2 in the last unit of the first block.

  Args:
    inputs: A tensor of size [batch, height, width, channels].
    depth: The depth of the ResNet unit output.
    depth_bottleneck: The depth of the bottleneck layers.
    stride: The ResNet unit's stride. Determines the amount of downsampling of
      the units output compared to its input.
    rate: An integer, rate for atrous convolution.
    outputs_collections: Collection to add the ResNet unit output.
    scope: Optional variable_scope.
Derek Chow's avatar
Derek Chow committed
106
107
    use_bounded_activations: Whether or not to use bounded activations. Bounded
      activations better lend themselves to quantized inference.
108
109
110
111
112
113
114
115
116

  Returns:
    The ResNet unit's output.
  """
  with tf.variable_scope(scope, 'bottleneck_v1', [inputs]) as sc:
    depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
    if depth == depth_in:
      shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
    else:
Derek Chow's avatar
Derek Chow committed
117
118
119
120
121
122
      shortcut = slim.conv2d(
          inputs,
          depth, [1, 1],
          stride=stride,
          activation_fn=tf.nn.relu6 if use_bounded_activations else None,
          scope='shortcut')
123
124
125
126
127
128
129
130

    residual = slim.conv2d(inputs, depth_bottleneck, [1, 1], stride=1,
                           scope='conv1')
    residual = resnet_utils.conv2d_same(residual, depth_bottleneck, 3, stride,
                                        rate=rate, scope='conv2')
    residual = slim.conv2d(residual, depth, [1, 1], stride=1,
                           activation_fn=None, scope='conv3')

Derek Chow's avatar
Derek Chow committed
131
132
133
134
135
136
    if use_bounded_activations:
      # Use clip_by_value to simulate bandpass activation.
      residual = tf.clip_by_value(residual, -6.0, 6.0)
      output = tf.nn.relu6(shortcut + residual)
    else:
      output = tf.nn.relu(shortcut + residual)
137
138

    return slim.utils.collect_named_outputs(outputs_collections,
139
                                            sc.name,
140
141
142
143
144
145
146
147
148
149
                                            output)


def resnet_v1(inputs,
              blocks,
              num_classes=None,
              is_training=True,
              global_pool=True,
              output_stride=None,
              include_root_block=True,
Derek Chow's avatar
Derek Chow committed
150
              spatial_squeeze=True,
pkulzc's avatar
pkulzc committed
151
              store_non_strided_activations=False,
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
              reuse=None,
              scope=None):
  """Generator for v1 ResNet models.

  This function generates a family of ResNet v1 models. See the resnet_v1_*()
  methods for specific model instantiations, obtained by selecting different
  block instantiations that produce ResNets of various depths.

  Training for image classification on Imagenet is usually done with [224, 224]
  inputs, resulting in [7, 7] feature maps at the output of the last ResNet
  block for the ResNets defined in [1] that have nominal stride equal to 32.
  However, for dense prediction tasks we advise that one uses inputs with
  spatial dimensions that are multiples of 32 plus 1, e.g., [321, 321]. In
  this case the feature maps at the ResNet output will have spatial shape
  [(height - 1) / output_stride + 1, (width - 1) / output_stride + 1]
  and corners exactly aligned with the input image corners, which greatly
  facilitates alignment of the features to the image. Using as input [225, 225]
  images results in [8, 8] feature maps at the output of the last ResNet block.

  For dense prediction tasks, the ResNet needs to run in fully-convolutional
  (FCN) mode and global_pool needs to be set to False. The ResNets in [1, 2] all
  have nominal stride equal to 32 and a good choice in FCN mode is to use
  output_stride=16 in order to increase the density of the computed features at
  small computational and memory overhead, cf. http://arxiv.org/abs/1606.00915.

  Args:
    inputs: A tensor of size [batch, height_in, width_in, channels].
    blocks: A list of length equal to the number of ResNet blocks. Each element
      is a resnet_utils.Block object describing the units in the block.
181
182
    num_classes: Number of predicted classes for classification tasks.
      If 0 or None, we return the features before the logit layer.
183
184
185
    is_training: whether batch_norm layers are in training mode. If this is set
      to None, the callers can specify slim.batch_norm's is_training parameter
      from an outer slim.arg_scope.
186
187
188
189
190
191
192
    global_pool: If True, we perform global average pooling before computing the
      logits. Set to True for image classification, False for dense prediction.
    output_stride: If None, then the output will be computed at the nominal
      network stride. If output_stride is not None, it specifies the requested
      ratio of input to output spatial resolution.
    include_root_block: If True, include the initial convolution followed by
      max-pooling, if False excludes it.
Neal Wu's avatar
Neal Wu committed
193
    spatial_squeeze: if True, logits is of shape [B, C], if false logits is
194
        of shape [B, 1, 1, C], where B is batch_size and C is number of classes.
195
196
197
        To use this parameter, the input images must be smaller than 300x300
        pixels, in which case the output logit layer does not contain spatial
        information and can be removed.
pkulzc's avatar
pkulzc committed
198
199
200
201
202
203
    store_non_strided_activations: If True, we compute non-strided (undecimated)
      activations at the last unit of each block and store them in the
      `outputs_collections` before subsampling them. This gives us access to
      higher resolution intermediate activations which are useful in some
      dense prediction problems but increases 4x the computation and memory cost
      at the last unit of each block.
204
205
206
207
208
209
210
211
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.

  Returns:
    net: A rank-4 tensor of size [batch, height_out, width_out, channels_out].
      If global_pool is False, then height_out and width_out are reduced by a
      factor of output_stride compared to the respective height_in and width_in,
212
213
214
215
      else both height_out and width_out equal one. If num_classes is 0 or None,
      then net is the output of the last ResNet block, potentially after global
      average pooling. If num_classes a non-zero integer, net contains the
      pre-softmax activations.
216
217
218
219
220
221
222
    end_points: A dictionary from components of the network to the corresponding
      activation.

  Raises:
    ValueError: If the target output_stride is not valid.
  """
  with tf.variable_scope(scope, 'resnet_v1', [inputs], reuse=reuse) as sc:
223
    end_points_collection = sc.original_name_scope + '_end_points'
224
225
226
    with slim.arg_scope([slim.conv2d, bottleneck,
                         resnet_utils.stack_blocks_dense],
                        outputs_collections=end_points_collection):
227
228
      with (slim.arg_scope([slim.batch_norm], is_training=is_training)
            if is_training is not None else NoOpScope()):
229
230
231
232
233
234
235
236
        net = inputs
        if include_root_block:
          if output_stride is not None:
            if output_stride % 4 != 0:
              raise ValueError('The output_stride needs to be a multiple of 4.')
            output_stride /= 4
          net = resnet_utils.conv2d_same(net, 64, 7, stride=2, scope='conv1')
          net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1')
pkulzc's avatar
pkulzc committed
237
238
        net = resnet_utils.stack_blocks_dense(net, blocks, output_stride,
                                              store_non_strided_activations)
239
240
241
242
        # Convert end_points_collection into a dictionary of end_points.
        end_points = slim.utils.convert_collection_to_dict(
            end_points_collection)

243
244
245
        if global_pool:
          # Global average pooling.
          net = tf.reduce_mean(net, [1, 2], name='pool5', keep_dims=True)
246
247
          end_points['global_pool'] = net
        if num_classes:
248
249
          net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None,
                            normalizer_fn=None, scope='logits')
250
          end_points[sc.name + '/logits'] = net
251
252
          if spatial_squeeze:
            net = tf.squeeze(net, [1, 2], name='SpatialSqueeze')
253
            end_points[sc.name + '/spatial_squeeze'] = net
254
255
          end_points['predictions'] = slim.softmax(net, scope='predictions')
        return net, end_points
256
257
258
resnet_v1.default_image_size = 224


derekjchow's avatar
derekjchow committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
def resnet_v1_block(scope, base_depth, num_units, stride):
  """Helper function for creating a resnet_v1 bottleneck block.

  Args:
    scope: The scope of the block.
    base_depth: The depth of the bottleneck layer for each unit.
    num_units: The number of units in the block.
    stride: The stride of the block, implemented as a stride in the last unit.
      All other units have stride=1.

  Returns:
    A resnet_v1 bottleneck block.
  """
  return resnet_utils.Block(scope, bottleneck, [{
      'depth': base_depth * 4,
      'depth_bottleneck': base_depth,
      'stride': 1
  }] * (num_units - 1) + [{
      'depth': base_depth * 4,
      'depth_bottleneck': base_depth,
      'stride': stride
  }])


283
284
285
286
287
def resnet_v1_50(inputs,
                 num_classes=None,
                 is_training=True,
                 global_pool=True,
                 output_stride=None,
288
                 spatial_squeeze=True,
pkulzc's avatar
pkulzc committed
289
                 store_non_strided_activations=False,
290
291
                 min_base_depth=8,
                 depth_multiplier=1,
292
293
294
                 reuse=None,
                 scope='resnet_v1_50'):
  """ResNet-50 model of [1]. See resnet_v1() for arg and return description."""
295
  depth_func = lambda d: max(int(d * depth_multiplier), min_base_depth)
296
  blocks = [
297
298
299
300
301
302
303
304
      resnet_v1_block('block1', base_depth=depth_func(64), num_units=3,
                      stride=2),
      resnet_v1_block('block2', base_depth=depth_func(128), num_units=4,
                      stride=2),
      resnet_v1_block('block3', base_depth=depth_func(256), num_units=6,
                      stride=2),
      resnet_v1_block('block4', base_depth=depth_func(512), num_units=3,
                      stride=1),
305
306
307
  ]
  return resnet_v1(inputs, blocks, num_classes, is_training,
                   global_pool=global_pool, output_stride=output_stride,
308
                   include_root_block=True, spatial_squeeze=spatial_squeeze,
pkulzc's avatar
pkulzc committed
309
                   store_non_strided_activations=store_non_strided_activations,
310
                   reuse=reuse, scope=scope)
amirbar's avatar
amirbar committed
311
resnet_v1_50.default_image_size = resnet_v1.default_image_size
312
313
314
315
316
317
318


def resnet_v1_101(inputs,
                  num_classes=None,
                  is_training=True,
                  global_pool=True,
                  output_stride=None,
319
                  spatial_squeeze=True,
pkulzc's avatar
pkulzc committed
320
                  store_non_strided_activations=False,
321
322
                  min_base_depth=8,
                  depth_multiplier=1,
323
324
325
                  reuse=None,
                  scope='resnet_v1_101'):
  """ResNet-101 model of [1]. See resnet_v1() for arg and return description."""
326
  depth_func = lambda d: max(int(d * depth_multiplier), min_base_depth)
327
  blocks = [
328
329
330
331
332
333
334
335
      resnet_v1_block('block1', base_depth=depth_func(64), num_units=3,
                      stride=2),
      resnet_v1_block('block2', base_depth=depth_func(128), num_units=4,
                      stride=2),
      resnet_v1_block('block3', base_depth=depth_func(256), num_units=23,
                      stride=2),
      resnet_v1_block('block4', base_depth=depth_func(512), num_units=3,
                      stride=1),
336
337
338
  ]
  return resnet_v1(inputs, blocks, num_classes, is_training,
                   global_pool=global_pool, output_stride=output_stride,
339
                   include_root_block=True, spatial_squeeze=spatial_squeeze,
pkulzc's avatar
pkulzc committed
340
                   store_non_strided_activations=store_non_strided_activations,
341
                   reuse=reuse, scope=scope)
amirbar's avatar
amirbar committed
342
resnet_v1_101.default_image_size = resnet_v1.default_image_size
343
344
345
346
347
348
349


def resnet_v1_152(inputs,
                  num_classes=None,
                  is_training=True,
                  global_pool=True,
                  output_stride=None,
pkulzc's avatar
pkulzc committed
350
                  store_non_strided_activations=False,
351
                  spatial_squeeze=True,
352
353
                  min_base_depth=8,
                  depth_multiplier=1,
354
355
356
                  reuse=None,
                  scope='resnet_v1_152'):
  """ResNet-152 model of [1]. See resnet_v1() for arg and return description."""
357
  depth_func = lambda d: max(int(d * depth_multiplier), min_base_depth)
358
  blocks = [
359
360
361
362
363
364
365
366
      resnet_v1_block('block1', base_depth=depth_func(64), num_units=3,
                      stride=2),
      resnet_v1_block('block2', base_depth=depth_func(128), num_units=8,
                      stride=2),
      resnet_v1_block('block3', base_depth=depth_func(256), num_units=36,
                      stride=2),
      resnet_v1_block('block4', base_depth=depth_func(512), num_units=3,
                      stride=1),
derekjchow's avatar
derekjchow committed
367
  ]
368
369
  return resnet_v1(inputs, blocks, num_classes, is_training,
                   global_pool=global_pool, output_stride=output_stride,
370
                   include_root_block=True, spatial_squeeze=spatial_squeeze,
pkulzc's avatar
pkulzc committed
371
                   store_non_strided_activations=store_non_strided_activations,
372
                   reuse=reuse, scope=scope)
amirbar's avatar
amirbar committed
373
resnet_v1_152.default_image_size = resnet_v1.default_image_size
374
375
376
377
378
379
380


def resnet_v1_200(inputs,
                  num_classes=None,
                  is_training=True,
                  global_pool=True,
                  output_stride=None,
pkulzc's avatar
pkulzc committed
381
                  store_non_strided_activations=False,
382
                  spatial_squeeze=True,
383
384
                  min_base_depth=8,
                  depth_multiplier=1,
385
386
387
                  reuse=None,
                  scope='resnet_v1_200'):
  """ResNet-200 model of [2]. See resnet_v1() for arg and return description."""
388
  depth_func = lambda d: max(int(d * depth_multiplier), min_base_depth)
389
  blocks = [
390
391
392
393
394
395
396
397
      resnet_v1_block('block1', base_depth=depth_func(64), num_units=3,
                      stride=2),
      resnet_v1_block('block2', base_depth=depth_func(128), num_units=24,
                      stride=2),
      resnet_v1_block('block3', base_depth=depth_func(256), num_units=36,
                      stride=2),
      resnet_v1_block('block4', base_depth=depth_func(512), num_units=3,
                      stride=1),
derekjchow's avatar
derekjchow committed
398
  ]
399
400
  return resnet_v1(inputs, blocks, num_classes, is_training,
                   global_pool=global_pool, output_stride=output_stride,
401
                   include_root_block=True, spatial_squeeze=spatial_squeeze,
pkulzc's avatar
pkulzc committed
402
                   store_non_strided_activations=store_non_strided_activations,
403
                   reuse=reuse, scope=scope)
Neal Wu's avatar
Neal Wu committed
404
resnet_v1_200.default_image_size = resnet_v1.default_image_size