overfeat_test.py 6.97 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for slim.nets.overfeat."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
21
from tensorflow.contrib import slim as contrib_slim
22
23
24

from nets import overfeat

25
slim = contrib_slim
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51


class OverFeatTest(tf.test.TestCase):

  def testBuild(self):
    batch_size = 5
    height, width = 231, 231
    num_classes = 1000
    with self.test_session():
      inputs = tf.random_uniform((batch_size, height, width, 3))
      logits, _ = overfeat.overfeat(inputs, num_classes)
      self.assertEquals(logits.op.name, 'overfeat/fc8/squeezed')
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])

  def testFullyConvolutional(self):
    batch_size = 1
    height, width = 281, 281
    num_classes = 1000
    with self.test_session():
      inputs = tf.random_uniform((batch_size, height, width, 3))
      logits, _ = overfeat.overfeat(inputs, num_classes, spatial_squeeze=False)
      self.assertEquals(logits.op.name, 'overfeat/fc8/BiasAdd')
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, 2, 2, num_classes])

52
53
54
55
56
57
58
59
60
61
62
63
  def testGlobalPool(self):
    batch_size = 1
    height, width = 281, 281
    num_classes = 1000
    with self.test_session():
      inputs = tf.random_uniform((batch_size, height, width, 3))
      logits, _ = overfeat.overfeat(inputs, num_classes, spatial_squeeze=False,
                                    global_pool=True)
      self.assertEquals(logits.op.name, 'overfeat/fc8/BiasAdd')
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, 1, 1, num_classes])

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
  def testEndPoints(self):
    batch_size = 5
    height, width = 231, 231
    num_classes = 1000
    with self.test_session():
      inputs = tf.random_uniform((batch_size, height, width, 3))
      _, end_points = overfeat.overfeat(inputs, num_classes)
      expected_names = ['overfeat/conv1',
                        'overfeat/pool1',
                        'overfeat/conv2',
                        'overfeat/pool2',
                        'overfeat/conv3',
                        'overfeat/conv4',
                        'overfeat/conv5',
                        'overfeat/pool5',
                        'overfeat/fc6',
                        'overfeat/fc7',
                        'overfeat/fc8'
                       ]
      self.assertSetEqual(set(end_points.keys()), set(expected_names))

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
  def testNoClasses(self):
    batch_size = 5
    height, width = 231, 231
    num_classes = None
    with self.test_session():
      inputs = tf.random_uniform((batch_size, height, width, 3))
      net, end_points = overfeat.overfeat(inputs, num_classes)
      expected_names = ['overfeat/conv1',
                        'overfeat/pool1',
                        'overfeat/conv2',
                        'overfeat/pool2',
                        'overfeat/conv3',
                        'overfeat/conv4',
                        'overfeat/conv5',
                        'overfeat/pool5',
                        'overfeat/fc6',
                        'overfeat/fc7'
                       ]
      self.assertSetEqual(set(end_points.keys()), set(expected_names))
      self.assertTrue(net.op.name.startswith('overfeat/fc7'))

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
  def testModelVariables(self):
    batch_size = 5
    height, width = 231, 231
    num_classes = 1000
    with self.test_session():
      inputs = tf.random_uniform((batch_size, height, width, 3))
      overfeat.overfeat(inputs, num_classes)
      expected_names = ['overfeat/conv1/weights',
                        'overfeat/conv1/biases',
                        'overfeat/conv2/weights',
                        'overfeat/conv2/biases',
                        'overfeat/conv3/weights',
                        'overfeat/conv3/biases',
                        'overfeat/conv4/weights',
                        'overfeat/conv4/biases',
                        'overfeat/conv5/weights',
                        'overfeat/conv5/biases',
                        'overfeat/fc6/weights',
                        'overfeat/fc6/biases',
                        'overfeat/fc7/weights',
                        'overfeat/fc7/biases',
                        'overfeat/fc8/weights',
                        'overfeat/fc8/biases',
                       ]
      model_variables = [v.op.name for v in slim.get_model_variables()]
      self.assertSetEqual(set(model_variables), set(expected_names))

  def testEvaluation(self):
    batch_size = 2
    height, width = 231, 231
    num_classes = 1000
    with self.test_session():
      eval_inputs = tf.random_uniform((batch_size, height, width, 3))
      logits, _ = overfeat.overfeat(eval_inputs, is_training=False)
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      predictions = tf.argmax(logits, 1)
      self.assertListEqual(predictions.get_shape().as_list(), [batch_size])

  def testTrainEvalWithReuse(self):
    train_batch_size = 2
    eval_batch_size = 1
    train_height, train_width = 231, 231
    eval_height, eval_width = 281, 281
    num_classes = 1000
    with self.test_session():
      train_inputs = tf.random_uniform(
          (train_batch_size, train_height, train_width, 3))
      logits, _ = overfeat.overfeat(train_inputs)
      self.assertListEqual(logits.get_shape().as_list(),
                           [train_batch_size, num_classes])
      tf.get_variable_scope().reuse_variables()
      eval_inputs = tf.random_uniform(
          (eval_batch_size, eval_height, eval_width, 3))
      logits, _ = overfeat.overfeat(eval_inputs, is_training=False,
                                    spatial_squeeze=False)
      self.assertListEqual(logits.get_shape().as_list(),
                           [eval_batch_size, 2, 2, num_classes])
      logits = tf.reduce_mean(logits, [1, 2])
      predictions = tf.argmax(logits, 1)
      self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size])

  def testForward(self):
    batch_size = 1
    height, width = 231, 231
    with self.test_session() as sess:
      inputs = tf.random_uniform((batch_size, height, width, 3))
      logits, _ = overfeat.overfeat(inputs)
174
      sess.run(tf.global_variables_initializer())
175
176
177
178
179
      output = sess.run(logits)
      self.assertTrue(output.any())

if __name__ == '__main__':
  tf.test.main()