nasnet_test.py 18.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for slim.nasnet."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
21
from tensorflow.contrib import slim as contrib_slim
22
23
24

from nets.nasnet import nasnet

25
slim = contrib_slim
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161


class NASNetTest(tf.test.TestCase):

  def testBuildLogitsCifarModel(self):
    batch_size = 5
    height, width = 32, 32
    num_classes = 10
    inputs = tf.random_uniform((batch_size, height, width, 3))
    tf.train.create_global_step()
    with slim.arg_scope(nasnet.nasnet_cifar_arg_scope()):
      logits, end_points = nasnet.build_nasnet_cifar(inputs, num_classes)
    auxlogits = end_points['AuxLogits']
    predictions = end_points['Predictions']
    self.assertListEqual(auxlogits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertListEqual(predictions.get_shape().as_list(),
                         [batch_size, num_classes])

  def testBuildLogitsMobileModel(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    tf.train.create_global_step()
    with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
      logits, end_points = nasnet.build_nasnet_mobile(inputs, num_classes)
    auxlogits = end_points['AuxLogits']
    predictions = end_points['Predictions']
    self.assertListEqual(auxlogits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertListEqual(predictions.get_shape().as_list(),
                         [batch_size, num_classes])

  def testBuildLogitsLargeModel(self):
    batch_size = 5
    height, width = 331, 331
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    tf.train.create_global_step()
    with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
      logits, end_points = nasnet.build_nasnet_large(inputs, num_classes)
    auxlogits = end_points['AuxLogits']
    predictions = end_points['Predictions']
    self.assertListEqual(auxlogits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertListEqual(predictions.get_shape().as_list(),
                         [batch_size, num_classes])

  def testBuildPreLogitsCifarModel(self):
    batch_size = 5
    height, width = 32, 32
    num_classes = None
    inputs = tf.random_uniform((batch_size, height, width, 3))
    tf.train.create_global_step()
    with slim.arg_scope(nasnet.nasnet_cifar_arg_scope()):
      net, end_points = nasnet.build_nasnet_cifar(inputs, num_classes)
    self.assertFalse('AuxLogits' in end_points)
    self.assertFalse('Predictions' in end_points)
    self.assertTrue(net.op.name.startswith('final_layer/Mean'))
    self.assertListEqual(net.get_shape().as_list(), [batch_size, 768])

  def testBuildPreLogitsMobileModel(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = None
    inputs = tf.random_uniform((batch_size, height, width, 3))
    tf.train.create_global_step()
    with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
      net, end_points = nasnet.build_nasnet_mobile(inputs, num_classes)
    self.assertFalse('AuxLogits' in end_points)
    self.assertFalse('Predictions' in end_points)
    self.assertTrue(net.op.name.startswith('final_layer/Mean'))
    self.assertListEqual(net.get_shape().as_list(), [batch_size, 1056])

  def testBuildPreLogitsLargeModel(self):
    batch_size = 5
    height, width = 331, 331
    num_classes = None
    inputs = tf.random_uniform((batch_size, height, width, 3))
    tf.train.create_global_step()
    with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
      net, end_points = nasnet.build_nasnet_large(inputs, num_classes)
    self.assertFalse('AuxLogits' in end_points)
    self.assertFalse('Predictions' in end_points)
    self.assertTrue(net.op.name.startswith('final_layer/Mean'))
    self.assertListEqual(net.get_shape().as_list(), [batch_size, 4032])

  def testAllEndPointsShapesCifarModel(self):
    batch_size = 5
    height, width = 32, 32
    num_classes = 10
    inputs = tf.random_uniform((batch_size, height, width, 3))
    tf.train.create_global_step()
    with slim.arg_scope(nasnet.nasnet_cifar_arg_scope()):
      _, end_points = nasnet.build_nasnet_cifar(inputs, num_classes)
    endpoints_shapes = {'Stem': [batch_size, 32, 32, 96],
                        'Cell_0': [batch_size, 32, 32, 192],
                        'Cell_1': [batch_size, 32, 32, 192],
                        'Cell_2': [batch_size, 32, 32, 192],
                        'Cell_3': [batch_size, 32, 32, 192],
                        'Cell_4': [batch_size, 32, 32, 192],
                        'Cell_5': [batch_size, 32, 32, 192],
                        'Cell_6': [batch_size, 16, 16, 384],
                        'Cell_7': [batch_size, 16, 16, 384],
                        'Cell_8': [batch_size, 16, 16, 384],
                        'Cell_9': [batch_size, 16, 16, 384],
                        'Cell_10': [batch_size, 16, 16, 384],
                        'Cell_11': [batch_size, 16, 16, 384],
                        'Cell_12': [batch_size, 8, 8, 768],
                        'Cell_13': [batch_size, 8, 8, 768],
                        'Cell_14': [batch_size, 8, 8, 768],
                        'Cell_15': [batch_size, 8, 8, 768],
                        'Cell_16': [batch_size, 8, 8, 768],
                        'Cell_17': [batch_size, 8, 8, 768],
                        'Reduction_Cell_0': [batch_size, 16, 16, 256],
                        'Reduction_Cell_1': [batch_size, 8, 8, 512],
                        'global_pool': [batch_size, 768],
                        # Logits and predictions
                        'AuxLogits': [batch_size, num_classes],
                        'Logits': [batch_size, num_classes],
                        'Predictions': [batch_size, num_classes]}
    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      tf.logging.info('Endpoint name: {}'.format(endpoint_name))
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)

pkulzc's avatar
pkulzc committed
162
163
164
165
166
167
168
169
  def testNoAuxHeadCifarModel(self):
    batch_size = 5
    height, width = 32, 32
    num_classes = 10
    for use_aux_head in (True, False):
      tf.reset_default_graph()
      inputs = tf.random_uniform((batch_size, height, width, 3))
      tf.train.create_global_step()
170
171
      config = nasnet.cifar_config()
      config.set_hparam('use_aux_head', int(use_aux_head))
pkulzc's avatar
pkulzc committed
172
173
      with slim.arg_scope(nasnet.nasnet_cifar_arg_scope()):
        _, end_points = nasnet.build_nasnet_cifar(inputs, num_classes,
174
                                                  config=config)
pkulzc's avatar
pkulzc committed
175
176
      self.assertEqual('AuxLogits' in end_points, use_aux_head)

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
  def testAllEndPointsShapesMobileModel(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    tf.train.create_global_step()
    with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
      _, end_points = nasnet.build_nasnet_mobile(inputs, num_classes)
    endpoints_shapes = {'Stem': [batch_size, 28, 28, 88],
                        'Cell_0': [batch_size, 28, 28, 264],
                        'Cell_1': [batch_size, 28, 28, 264],
                        'Cell_2': [batch_size, 28, 28, 264],
                        'Cell_3': [batch_size, 28, 28, 264],
                        'Cell_4': [batch_size, 14, 14, 528],
                        'Cell_5': [batch_size, 14, 14, 528],
                        'Cell_6': [batch_size, 14, 14, 528],
                        'Cell_7': [batch_size, 14, 14, 528],
                        'Cell_8': [batch_size, 7, 7, 1056],
                        'Cell_9': [batch_size, 7, 7, 1056],
                        'Cell_10': [batch_size, 7, 7, 1056],
                        'Cell_11': [batch_size, 7, 7, 1056],
                        'Reduction_Cell_0': [batch_size, 14, 14, 352],
                        'Reduction_Cell_1': [batch_size, 7, 7, 704],
                        'global_pool': [batch_size, 1056],
                        # Logits and predictions
                        'AuxLogits': [batch_size, num_classes],
                        'Logits': [batch_size, num_classes],
                        'Predictions': [batch_size, num_classes]}
    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      tf.logging.info('Endpoint name: {}'.format(endpoint_name))
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)

pkulzc's avatar
pkulzc committed
213
214
215
216
217
218
219
220
  def testNoAuxHeadMobileModel(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = 1000
    for use_aux_head in (True, False):
      tf.reset_default_graph()
      inputs = tf.random_uniform((batch_size, height, width, 3))
      tf.train.create_global_step()
221
222
      config = nasnet.mobile_imagenet_config()
      config.set_hparam('use_aux_head', int(use_aux_head))
pkulzc's avatar
pkulzc committed
223
224
      with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
        _, end_points = nasnet.build_nasnet_mobile(inputs, num_classes,
225
                                                   config=config)
pkulzc's avatar
pkulzc committed
226
227
      self.assertEqual('AuxLogits' in end_points, use_aux_head)

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
  def testAllEndPointsShapesLargeModel(self):
    batch_size = 5
    height, width = 331, 331
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    tf.train.create_global_step()
    with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
      _, end_points = nasnet.build_nasnet_large(inputs, num_classes)
    endpoints_shapes = {'Stem': [batch_size, 42, 42, 336],
                        'Cell_0': [batch_size, 42, 42, 1008],
                        'Cell_1': [batch_size, 42, 42, 1008],
                        'Cell_2': [batch_size, 42, 42, 1008],
                        'Cell_3': [batch_size, 42, 42, 1008],
                        'Cell_4': [batch_size, 42, 42, 1008],
                        'Cell_5': [batch_size, 42, 42, 1008],
                        'Cell_6': [batch_size, 21, 21, 2016],
                        'Cell_7': [batch_size, 21, 21, 2016],
                        'Cell_8': [batch_size, 21, 21, 2016],
                        'Cell_9': [batch_size, 21, 21, 2016],
                        'Cell_10': [batch_size, 21, 21, 2016],
                        'Cell_11': [batch_size, 21, 21, 2016],
                        'Cell_12': [batch_size, 11, 11, 4032],
                        'Cell_13': [batch_size, 11, 11, 4032],
                        'Cell_14': [batch_size, 11, 11, 4032],
                        'Cell_15': [batch_size, 11, 11, 4032],
                        'Cell_16': [batch_size, 11, 11, 4032],
                        'Cell_17': [batch_size, 11, 11, 4032],
                        'Reduction_Cell_0': [batch_size, 21, 21, 1344],
                        'Reduction_Cell_1': [batch_size, 11, 11, 2688],
                        'global_pool': [batch_size, 4032],
                        # Logits and predictions
                        'AuxLogits': [batch_size, num_classes],
                        'Logits': [batch_size, num_classes],
                        'Predictions': [batch_size, num_classes]}
    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      tf.logging.info('Endpoint name: {}'.format(endpoint_name))
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)

pkulzc's avatar
pkulzc committed
270
271
272
273
274
275
276
277
  def testNoAuxHeadLargeModel(self):
    batch_size = 5
    height, width = 331, 331
    num_classes = 1000
    for use_aux_head in (True, False):
      tf.reset_default_graph()
      inputs = tf.random_uniform((batch_size, height, width, 3))
      tf.train.create_global_step()
278
279
      config = nasnet.large_imagenet_config()
      config.set_hparam('use_aux_head', int(use_aux_head))
pkulzc's avatar
pkulzc committed
280
281
      with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
        _, end_points = nasnet.build_nasnet_large(inputs, num_classes,
282
                                                  config=config)
pkulzc's avatar
pkulzc committed
283
284
      self.assertEqual('AuxLogits' in end_points, use_aux_head)

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
  def testVariablesSetDeviceMobileModel(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    tf.train.create_global_step()
    # Force all Variables to reside on the device.
    with tf.variable_scope('on_cpu'), tf.device('/cpu:0'):
      with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
        nasnet.build_nasnet_mobile(inputs, num_classes)
    with tf.variable_scope('on_gpu'), tf.device('/gpu:0'):
      with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
        nasnet.build_nasnet_mobile(inputs, num_classes)
    for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'):
      self.assertDeviceEqual(v.device, '/cpu:0')
    for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'):
      self.assertDeviceEqual(v.device, '/gpu:0')

  def testUnknownBatchSizeMobileModel(self):
    batch_size = 1
    height, width = 224, 224
    num_classes = 1000
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, (None, height, width, 3))
      with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
        logits, _ = nasnet.build_nasnet_mobile(inputs, num_classes)
      self.assertListEqual(logits.get_shape().as_list(),
                           [None, num_classes])
      images = tf.random_uniform((batch_size, height, width, 3))
      sess.run(tf.global_variables_initializer())
      output = sess.run(logits, {inputs: images.eval()})
      self.assertEquals(output.shape, (batch_size, num_classes))

  def testEvaluationMobileModel(self):
    batch_size = 2
    height, width = 224, 224
    num_classes = 1000
    with self.test_session() as sess:
      eval_inputs = tf.random_uniform((batch_size, height, width, 3))
      with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
        logits, _ = nasnet.build_nasnet_mobile(eval_inputs,
                                               num_classes,
                                               is_training=False)
      predictions = tf.argmax(logits, 1)
      sess.run(tf.global_variables_initializer())
      output = sess.run(predictions)
      self.assertEquals(output.shape, (batch_size,))

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
  def testOverrideHParamsCifarModel(self):
    batch_size = 5
    height, width = 32, 32
    num_classes = 10
    inputs = tf.random_uniform((batch_size, height, width, 3))
    tf.train.create_global_step()
    config = nasnet.cifar_config()
    config.set_hparam('data_format', 'NCHW')
    with slim.arg_scope(nasnet.nasnet_cifar_arg_scope()):
      _, end_points = nasnet.build_nasnet_cifar(
          inputs, num_classes, config=config)
    self.assertListEqual(
        end_points['Stem'].shape.as_list(), [batch_size, 96, 32, 32])

  def testOverrideHParamsMobileModel(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    tf.train.create_global_step()
    config = nasnet.mobile_imagenet_config()
    config.set_hparam('data_format', 'NCHW')
    with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
      _, end_points = nasnet.build_nasnet_mobile(
          inputs, num_classes, config=config)
    self.assertListEqual(
        end_points['Stem'].shape.as_list(), [batch_size, 88, 28, 28])

  def testOverrideHParamsLargeModel(self):
    batch_size = 5
    height, width = 331, 331
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    tf.train.create_global_step()
    config = nasnet.large_imagenet_config()
    config.set_hparam('data_format', 'NCHW')
    with slim.arg_scope(nasnet.nasnet_large_arg_scope()):
      _, end_points = nasnet.build_nasnet_large(
          inputs, num_classes, config=config)
    self.assertListEqual(
        end_points['Stem'].shape.as_list(), [batch_size, 336, 42, 42])

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
  def testCurrentStepCifarModel(self):
    batch_size = 5
    height, width = 32, 32
    num_classes = 10
    inputs = tf.random_uniform((batch_size, height, width, 3))
    global_step = tf.train.create_global_step()
    with slim.arg_scope(nasnet.nasnet_cifar_arg_scope()):
      logits, end_points = nasnet.build_nasnet_cifar(inputs,
                                                     num_classes,
                                                     current_step=global_step)
    auxlogits = end_points['AuxLogits']
    predictions = end_points['Predictions']
    self.assertListEqual(auxlogits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertListEqual(predictions.get_shape().as_list(),
                         [batch_size, num_classes])
393

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
  def testUseBoundedAcitvationCifarModel(self):
    batch_size = 1
    height, width = 32, 32
    num_classes = 10
    for use_bounded_activation in (True, False):
      tf.reset_default_graph()
      inputs = tf.random_uniform((batch_size, height, width, 3))
      config = nasnet.cifar_config()
      config.set_hparam('use_bounded_activation', use_bounded_activation)
      with slim.arg_scope(nasnet.nasnet_cifar_arg_scope()):
        _, _ = nasnet.build_nasnet_cifar(
            inputs, num_classes, config=config)
      for node in tf.get_default_graph().as_graph_def().node:
        if node.op.startswith('Relu'):
          self.assertEqual(node.op == 'Relu6', use_bounded_activation)

410
411
if __name__ == '__main__':
  tf.test.main()