inception_v2.py 26 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains the definition for inception v2 classification network."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
22
from tensorflow.contrib import slim as contrib_slim
23

Alex Kurakin's avatar
Alex Kurakin committed
24
25
from nets import inception_utils

26
slim = contrib_slim
27
28
29
30
31
32
33
trunc_normal = lambda stddev: tf.truncated_normal_initializer(0.0, stddev)


def inception_v2_base(inputs,
                      final_endpoint='Mixed_5c',
                      min_depth=16,
                      depth_multiplier=1.0,
Derek Chow's avatar
Derek Chow committed
34
35
                      use_separable_conv=True,
                      data_format='NHWC',
36
                      include_root_block=True,
37
38
39
40
41
42
43
44
45
46
47
48
49
                      scope=None):
  """Inception v2 (6a2).

  Constructs an Inception v2 network from inputs to the given final endpoint.
  This method can construct the network up to the layer inception(5b) as
  described in http://arxiv.org/abs/1502.03167.

  Args:
    inputs: a tensor of shape [batch_size, height, width, channels].
    final_endpoint: specifies the endpoint to construct the network up to. It
      can be one of ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
      'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c', 'Mixed_4a',
      'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_5a', 'Mixed_5b',
50
51
52
      'Mixed_5c']. If include_root_block is False, ['Conv2d_1a_7x7',
      'MaxPool_2a_3x3', 'Conv2d_2b_1x1', 'Conv2d_2c_3x3', 'MaxPool_3a_3x3'] will
      not be available.
53
54
55
56
57
58
59
    min_depth: Minimum depth value (number of channels) for all convolution ops.
      Enforced when depth_multiplier < 1, and not an active constraint when
      depth_multiplier >= 1.
    depth_multiplier: Float multiplier for the depth (number of channels)
      for all convolution ops. The value must be greater than zero. Typical
      usage will be to set this value in (0, 1) to reduce the number of
      parameters or computation cost of the model.
Derek Chow's avatar
Derek Chow committed
60
61
62
    use_separable_conv: Use a separable convolution for the first layer
      Conv2d_1a_7x7. If this is False, use a normal convolution instead.
    data_format: Data format of the activations ('NHWC' or 'NCHW').
63
64
    include_root_block: If True, include the convolution and max-pooling layers
      before the inception modules. If False, excludes those layers.
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    scope: Optional variable_scope.

  Returns:
    tensor_out: output tensor corresponding to the final_endpoint.
    end_points: a set of activations for external use, for example summaries or
                losses.

  Raises:
    ValueError: if final_endpoint is not set to one of the predefined values,
                or depth_multiplier <= 0
  """

  # end_points will collect relevant activations for external use, for example
  # summaries or losses.
  end_points = {}

  # Used to find thinned depths for each layer.
  if depth_multiplier <= 0:
    raise ValueError('depth_multiplier is not greater than zero.')
  depth = lambda d: max(int(d * depth_multiplier), min_depth)

Derek Chow's avatar
Derek Chow committed
86
87
88
89
90
91
92
93
94
  if data_format != 'NHWC' and data_format != 'NCHW':
    raise ValueError('data_format must be either NHWC or NCHW.')
  if data_format == 'NCHW' and use_separable_conv:
    raise ValueError(
        'separable convolution only supports NHWC layout. NCHW data format can'
        ' only be used when use_separable_conv is False.'
    )

  concat_dim = 3 if data_format == 'NHWC' else 1
95
96
  with tf.variable_scope(scope, 'InceptionV2', [inputs]):
    with slim.arg_scope(
Derek Chow's avatar
Derek Chow committed
97
98
99
100
        [slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
        stride=1,
        padding='SAME',
        data_format=data_format):
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
      net = inputs
      if include_root_block:
        # Note that sizes in the comments below assume an input spatial size of
        # 224x224, however, the inputs can be of any size greater 32x32.

        # 224 x 224 x 3
        end_point = 'Conv2d_1a_7x7'

        if use_separable_conv:
          # depthwise_multiplier here is different from depth_multiplier.
          # depthwise_multiplier determines the output channels of the initial
          # depthwise conv (see docs for tf.nn.separable_conv2d), while
          # depth_multiplier controls the # channels of the subsequent 1x1
          # convolution. Must have
          #   in_channels * depthwise_multipler <= out_channels
          # so that the separable convolution is not overparameterized.
          depthwise_multiplier = min(int(depth(64) / 3), 8)
          net = slim.separable_conv2d(
              inputs,
              depth(64), [7, 7],
              depth_multiplier=depthwise_multiplier,
              stride=2,
              padding='SAME',
              weights_initializer=trunc_normal(1.0),
              scope=end_point)
        else:
          # Use a normal convolution instead of a separable convolution.
          net = slim.conv2d(
              inputs,
              depth(64), [7, 7],
              stride=2,
              weights_initializer=trunc_normal(1.0),
              scope=end_point)
        end_points[end_point] = net
        if end_point == final_endpoint:
          return net, end_points
        # 112 x 112 x 64
        end_point = 'MaxPool_2a_3x3'
        net = slim.max_pool2d(net, [3, 3], scope=end_point, stride=2)
        end_points[end_point] = net
        if end_point == final_endpoint:
          return net, end_points
        # 56 x 56 x 64
        end_point = 'Conv2d_2b_1x1'
Derek Chow's avatar
Derek Chow committed
146
        net = slim.conv2d(
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
            net,
            depth(64), [1, 1],
            scope=end_point,
            weights_initializer=trunc_normal(0.1))
        end_points[end_point] = net
        if end_point == final_endpoint:
          return net, end_points
        # 56 x 56 x 64
        end_point = 'Conv2d_2c_3x3'
        net = slim.conv2d(net, depth(192), [3, 3], scope=end_point)
        end_points[end_point] = net
        if end_point == final_endpoint:
          return net, end_points
        # 56 x 56 x 192
        end_point = 'MaxPool_3a_3x3'
        net = slim.max_pool2d(net, [3, 3], scope=end_point, stride=2)
        end_points[end_point] = net
        if end_point == final_endpoint:
          return net, end_points

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
      # 28 x 28 x 192
      # Inception module.
      end_point = 'Mixed_3b'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(64), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(64), [3, 3],
                                 scope='Conv2d_0b_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(
              net, depth(64), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(96), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(96), [3, 3],
                                 scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(32), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
Derek Chow's avatar
Derek Chow committed
195
196
        net = tf.concat(
            axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3])
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 28 x 28 x 256
      end_point = 'Mixed_3c'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(64), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(96), [3, 3],
                                 scope='Conv2d_0b_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(
              net, depth(64), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(96), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(96), [3, 3],
                                 scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(64), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
Derek Chow's avatar
Derek Chow committed
226
227
        net = tf.concat(
            axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3])
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 28 x 28 x 320
      end_point = 'Mixed_4a'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(
              net, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_0 = slim.conv2d(branch_0, depth(160), [3, 3], stride=2,
                                 scope='Conv2d_1a_3x3')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(64), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(
              branch_1, depth(96), [3, 3], scope='Conv2d_0b_3x3')
          branch_1 = slim.conv2d(
              branch_1, depth(96), [3, 3], stride=2, scope='Conv2d_1a_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.max_pool2d(
              net, [3, 3], stride=2, scope='MaxPool_1a_3x3')
Derek Chow's avatar
Derek Chow committed
252
        net = tf.concat(axis=concat_dim, values=[branch_0, branch_1, branch_2])
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 14 x 14 x 576
      end_point = 'Mixed_4b'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(224), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(64), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(
              branch_1, depth(96), [3, 3], scope='Conv2d_0b_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(
              net, depth(96), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(128), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(128), [3, 3],
                                 scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
Derek Chow's avatar
Derek Chow committed
282
283
        net = tf.concat(
            axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3])
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 14 x 14 x 576
      end_point = 'Mixed_4c'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(96), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(128), [3, 3],
                                 scope='Conv2d_0b_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(
              net, depth(96), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(128), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(128), [3, 3],
                                 scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
Derek Chow's avatar
Derek Chow committed
313
314
        net = tf.concat(
            axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3])
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 14 x 14 x 576
      end_point = 'Mixed_4d'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(160), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(160), [3, 3],
                                 scope='Conv2d_0b_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(
              net, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(160), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(160), [3, 3],
                                 scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(96), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
Derek Chow's avatar
Derek Chow committed
344
345
        net = tf.concat(
            axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3])
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 14 x 14 x 576
      end_point = 'Mixed_4e'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(96), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(192), [3, 3],
                                 scope='Conv2d_0b_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(
              net, depth(160), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(192), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(192), [3, 3],
                                 scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(96), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
Derek Chow's avatar
Derek Chow committed
375
376
        net = tf.concat(
            axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3])
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 14 x 14 x 576
      end_point = 'Mixed_5a'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(
              net, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_0 = slim.conv2d(branch_0, depth(192), [3, 3], stride=2,
                                 scope='Conv2d_1a_3x3')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(192), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(256), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_1 = slim.conv2d(branch_1, depth(256), [3, 3], stride=2,
                                 scope='Conv2d_1a_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.max_pool2d(net, [3, 3], stride=2,
                                     scope='MaxPool_1a_3x3')
Derek Chow's avatar
Derek Chow committed
401
402
        net = tf.concat(
            axis=concat_dim, values=[branch_0, branch_1, branch_2])
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 7 x 7 x 1024
      end_point = 'Mixed_5b'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(352), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(192), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(320), [3, 3],
                                 scope='Conv2d_0b_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(
              net, depth(160), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(224), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(224), [3, 3],
                                 scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
Derek Chow's avatar
Derek Chow committed
432
433
        net = tf.concat(
            axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3])
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 7 x 7 x 1024
      end_point = 'Mixed_5c'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(352), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(192), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(320), [3, 3],
                                 scope='Conv2d_0b_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(
              net, depth(192), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(224), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(224), [3, 3],
                                 scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
Derek Chow's avatar
Derek Chow committed
463
464
        net = tf.concat(
            axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3])
465
466
467
468
469
470
471
472
473
474
475
476
477
478
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
    raise ValueError('Unknown final endpoint %s' % final_endpoint)


def inception_v2(inputs,
                 num_classes=1000,
                 is_training=True,
                 dropout_keep_prob=0.8,
                 min_depth=16,
                 depth_multiplier=1.0,
                 prediction_fn=slim.softmax,
                 spatial_squeeze=True,
                 reuse=None,
479
480
                 scope='InceptionV2',
                 global_pool=False):
481
482
483
484
485
486
487
488
489
  """Inception v2 model for classification.

  Constructs an Inception v2 network for classification as described in
  http://arxiv.org/abs/1502.03167.

  The default image size used to train this network is 224x224.

  Args:
    inputs: a tensor of shape [batch_size, height, width, channels].
490
491
492
    num_classes: number of predicted classes. If 0 or None, the logits layer
      is omitted and the input features to the logits layer (before dropout)
      are returned instead.
493
494
495
496
497
498
499
500
501
502
    is_training: whether is training or not.
    dropout_keep_prob: the percentage of activation values that are retained.
    min_depth: Minimum depth value (number of channels) for all convolution ops.
      Enforced when depth_multiplier < 1, and not an active constraint when
      depth_multiplier >= 1.
    depth_multiplier: Float multiplier for the depth (number of channels)
      for all convolution ops. The value must be greater than zero. Typical
      usage will be to set this value in (0, 1) to reduce the number of
      parameters or computation cost of the model.
    prediction_fn: a function to get predictions out of logits.
Derek Chow's avatar
Derek Chow committed
503
504
    spatial_squeeze: if True, logits is of shape [B, C], if false logits is of
        shape [B, 1, 1, C], where B is batch_size and C is number of classes.
505
506
507
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.
508
509
510
511
    global_pool: Optional boolean flag to control the avgpooling before the
      logits layer. If false or unset, pooling is done with a fixed window
      that reduces default-sized inputs to 1x1, while larger inputs lead to
      larger outputs. If true, any input size is pooled down to 1x1.
512
513

  Returns:
514
515
516
    net: a Tensor with the logits (pre-softmax activations) if num_classes
      is a non-zero integer, or the non-dropped-out input to the logits layer
      if num_classes is 0 or None.
517
518
519
520
521
522
523
524
525
526
527
    end_points: a dictionary from components of the network to the corresponding
      activation.

  Raises:
    ValueError: if final_endpoint is not set to one of the predefined values,
                or depth_multiplier <= 0
  """
  if depth_multiplier <= 0:
    raise ValueError('depth_multiplier is not greater than zero.')

  # Final pooling and prediction
528
  with tf.variable_scope(scope, 'InceptionV2', [inputs], reuse=reuse) as scope:
529
530
531
532
533
534
    with slim.arg_scope([slim.batch_norm, slim.dropout],
                        is_training=is_training):
      net, end_points = inception_v2_base(
          inputs, scope=scope, min_depth=min_depth,
          depth_multiplier=depth_multiplier)
      with tf.variable_scope('Logits'):
535
536
537
538
539
540
541
542
543
544
545
546
        if global_pool:
          # Global average pooling.
          net = tf.reduce_mean(net, [1, 2], keep_dims=True, name='global_pool')
          end_points['global_pool'] = net
        else:
          # Pooling with a fixed kernel size.
          kernel_size = _reduced_kernel_size_for_small_input(net, [7, 7])
          net = slim.avg_pool2d(net, kernel_size, padding='VALID',
                                scope='AvgPool_1a_{}x{}'.format(*kernel_size))
          end_points['AvgPool_1a'] = net
        if not num_classes:
          return net, end_points
547
548
        # 1 x 1 x 1024
        net = slim.dropout(net, keep_prob=dropout_keep_prob, scope='Dropout_1b')
549
        end_points['PreLogits'] = net
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
        logits = slim.conv2d(net, num_classes, [1, 1], activation_fn=None,
                             normalizer_fn=None, scope='Conv2d_1c_1x1')
        if spatial_squeeze:
          logits = tf.squeeze(logits, [1, 2], name='SpatialSqueeze')
      end_points['Logits'] = logits
      end_points['Predictions'] = prediction_fn(logits, scope='Predictions')
  return logits, end_points
inception_v2.default_image_size = 224


def _reduced_kernel_size_for_small_input(input_tensor, kernel_size):
  """Define kernel size which is automatically reduced for small input.

  If the shape of the input images is unknown at graph construction time this
  function assumes that the input images are is large enough.

  Args:
    input_tensor: input tensor of size [batch_size, height, width, channels].
    kernel_size: desired kernel size of length 2: [kernel_height, kernel_width]

  Returns:
    a tensor with the kernel size.

  TODO(jrru): Make this function work with unknown shapes. Theoretically, this
  can be done with the code below. Problems are two-fold: (1) If the shape was
  known, it will be lost. (2) inception.slim.ops._two_element_tuple cannot
  handle tensors that define the kernel size.
      shape = tf.shape(input_tensor)
Derek Chow's avatar
Derek Chow committed
578
579
      return = tf.stack([tf.minimum(shape[1], kernel_size[0]),
                         tf.minimum(shape[2], kernel_size[1])])
580
581
582
583
584
585
586
587
588
589
590

  """
  shape = input_tensor.get_shape().as_list()
  if shape[1] is None or shape[2] is None:
    kernel_size_out = kernel_size
  else:
    kernel_size_out = [min(shape[1], kernel_size[0]),
                       min(shape[2], kernel_size[1])]
  return kernel_size_out


Alex Kurakin's avatar
Alex Kurakin committed
591
inception_v2_arg_scope = inception_utils.inception_arg_scope