inception_v1_test.py 11.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for nets.inception_v1."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import tensorflow as tf
23
from tensorflow.contrib import slim as contrib_slim
24
25
26

from nets import inception

27
slim = contrib_slim
28
29
30
31
32
33
34
35
36
37
38


class InceptionV1Test(tf.test.TestCase):

  def testBuildClassificationNetwork(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = 1000

    inputs = tf.random_uniform((batch_size, height, width, 3))
    logits, end_points = inception.inception_v1(inputs, num_classes)
39
40
    self.assertTrue(logits.op.name.startswith(
        'InceptionV1/Logits/SpatialSqueeze'))
41
42
43
44
45
46
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertTrue('Predictions' in end_points)
    self.assertListEqual(end_points['Predictions'].get_shape().as_list(),
                         [batch_size, num_classes])

47
48
49
50
51
52
53
54
55
56
57
58
  def testBuildPreLogitsNetwork(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = None

    inputs = tf.random_uniform((batch_size, height, width, 3))
    net, end_points = inception.inception_v1(inputs, num_classes)
    self.assertTrue(net.op.name.startswith('InceptionV1/Logits/AvgPool'))
    self.assertListEqual(net.get_shape().as_list(), [batch_size, 1, 1, 1024])
    self.assertFalse('Logits' in end_points)
    self.assertFalse('Predictions' in end_points)

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
  def testBuildBaseNetwork(self):
    batch_size = 5
    height, width = 224, 224

    inputs = tf.random_uniform((batch_size, height, width, 3))
    mixed_6c, end_points = inception.inception_v1_base(inputs)
    self.assertTrue(mixed_6c.op.name.startswith('InceptionV1/Mixed_5c'))
    self.assertListEqual(mixed_6c.get_shape().as_list(),
                         [batch_size, 7, 7, 1024])
    expected_endpoints = ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
                          'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b',
                          'Mixed_3c', 'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c',
                          'Mixed_4d', 'Mixed_4e', 'Mixed_4f', 'MaxPool_5a_2x2',
                          'Mixed_5b', 'Mixed_5c']
    self.assertItemsEqual(end_points.keys(), expected_endpoints)

  def testBuildOnlyUptoFinalEndpoint(self):
    batch_size = 5
    height, width = 224, 224
    endpoints = ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
                 'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c',
                 'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d',
                 'Mixed_4e', 'Mixed_4f', 'MaxPool_5a_2x2', 'Mixed_5b',
                 'Mixed_5c']
    for index, endpoint in enumerate(endpoints):
      with tf.Graph().as_default():
        inputs = tf.random_uniform((batch_size, height, width, 3))
        out_tensor, end_points = inception.inception_v1_base(
            inputs, final_endpoint=endpoint)
        self.assertTrue(out_tensor.op.name.startswith(
            'InceptionV1/' + endpoint))
pkulzc's avatar
pkulzc committed
90
        self.assertItemsEqual(endpoints[:index+1], end_points.keys())
91
92
93
94
95
96
97
98

  def testBuildAndCheckAllEndPointsUptoMixed5c(self):
    batch_size = 5
    height, width = 224, 224

    inputs = tf.random_uniform((batch_size, height, width, 3))
    _, end_points = inception.inception_v1_base(inputs,
                                                final_endpoint='Mixed_5c')
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    endpoints_shapes = {
        'Conv2d_1a_7x7': [5, 112, 112, 64],
        'MaxPool_2a_3x3': [5, 56, 56, 64],
        'Conv2d_2b_1x1': [5, 56, 56, 64],
        'Conv2d_2c_3x3': [5, 56, 56, 192],
        'MaxPool_3a_3x3': [5, 28, 28, 192],
        'Mixed_3b': [5, 28, 28, 256],
        'Mixed_3c': [5, 28, 28, 480],
        'MaxPool_4a_3x3': [5, 14, 14, 480],
        'Mixed_4b': [5, 14, 14, 512],
        'Mixed_4c': [5, 14, 14, 512],
        'Mixed_4d': [5, 14, 14, 512],
        'Mixed_4e': [5, 14, 14, 528],
        'Mixed_4f': [5, 14, 14, 832],
        'MaxPool_5a_2x2': [5, 7, 7, 832],
        'Mixed_5b': [5, 7, 7, 832],
        'Mixed_5c': [5, 7, 7, 1024]
    }
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)

  def testModelHasExpectedNumberOfParameters(self):
    batch_size = 5
    height, width = 224, 224
    inputs = tf.random_uniform((batch_size, height, width, 3))
    with slim.arg_scope(inception.inception_v1_arg_scope()):
      inception.inception_v1_base(inputs)
    total_params, _ = slim.model_analyzer.analyze_vars(
        slim.get_model_variables())
    self.assertAlmostEqual(5607184, total_params)

  def testHalfSizeImages(self):
    batch_size = 5
    height, width = 112, 112

    inputs = tf.random_uniform((batch_size, height, width, 3))
    mixed_5c, _ = inception.inception_v1_base(inputs)
    self.assertTrue(mixed_5c.op.name.startswith('InceptionV1/Mixed_5c'))
    self.assertListEqual(mixed_5c.get_shape().as_list(),
                         [batch_size, 4, 4, 1024])

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
  def testBuildBaseNetworkWithoutRootBlock(self):
    batch_size = 5
    height, width = 28, 28
    channels = 192

    inputs = tf.random_uniform((batch_size, height, width, channels))
    _, end_points = inception.inception_v1_base(
        inputs, include_root_block=False)
    endpoints_shapes = {
        'Mixed_3b': [5, 28, 28, 256],
        'Mixed_3c': [5, 28, 28, 480],
        'MaxPool_4a_3x3': [5, 14, 14, 480],
        'Mixed_4b': [5, 14, 14, 512],
        'Mixed_4c': [5, 14, 14, 512],
        'Mixed_4d': [5, 14, 14, 512],
        'Mixed_4e': [5, 14, 14, 528],
        'Mixed_4f': [5, 14, 14, 832],
        'MaxPool_5a_2x2': [5, 7, 7, 832],
        'Mixed_5b': [5, 7, 7, 832],
        'Mixed_5c': [5, 7, 7, 1024]
    }

    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)

174
175
176
177
178
179
180
181
182
183
184
185
186
187
  def testUnknownImageShape(self):
    tf.reset_default_graph()
    batch_size = 2
    height, width = 224, 224
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3))
      logits, end_points = inception.inception_v1(inputs, num_classes)
      self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_5c']
      feed_dict = {inputs: input_np}
188
      tf.global_variables_initializer().run()
189
190
191
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])

192
193
  def testGlobalPoolUnknownImageShape(self):
    tf.reset_default_graph()
pkulzc's avatar
pkulzc committed
194
195
    batch_size = 1
    height, width = 250, 300
196
197
198
199
200
201
202
203
204
205
206
207
208
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3))
      logits, end_points = inception.inception_v1(inputs, num_classes,
                                                  global_pool=True)
      self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_5c']
      feed_dict = {inputs: input_np}
      tf.global_variables_initializer().run()
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
pkulzc's avatar
pkulzc committed
209
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 10, 1024])
210

211
212
213
214
215
216
217
218
219
220
221
222
223
  def testUnknowBatchSize(self):
    batch_size = 1
    height, width = 224, 224
    num_classes = 1000

    inputs = tf.placeholder(tf.float32, (None, height, width, 3))
    logits, _ = inception.inception_v1(inputs, num_classes)
    self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [None, num_classes])
    images = tf.random_uniform((batch_size, height, width, 3))

    with self.test_session() as sess:
224
      sess.run(tf.global_variables_initializer())
225
226
227
228
229
230
231
232
233
234
235
236
237
238
      output = sess.run(logits, {inputs: images.eval()})
      self.assertEquals(output.shape, (batch_size, num_classes))

  def testEvaluation(self):
    batch_size = 2
    height, width = 224, 224
    num_classes = 1000

    eval_inputs = tf.random_uniform((batch_size, height, width, 3))
    logits, _ = inception.inception_v1(eval_inputs, num_classes,
                                       is_training=False)
    predictions = tf.argmax(logits, 1)

    with self.test_session() as sess:
239
      sess.run(tf.global_variables_initializer())
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
      output = sess.run(predictions)
      self.assertEquals(output.shape, (batch_size,))

  def testTrainEvalWithReuse(self):
    train_batch_size = 5
    eval_batch_size = 2
    height, width = 224, 224
    num_classes = 1000

    train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
    inception.inception_v1(train_inputs, num_classes)
    eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
    logits, _ = inception.inception_v1(eval_inputs, num_classes, reuse=True)
    predictions = tf.argmax(logits, 1)

    with self.test_session() as sess:
256
      sess.run(tf.global_variables_initializer())
257
258
259
260
261
262
263
264
265
266
267
      output = sess.run(predictions)
      self.assertEquals(output.shape, (eval_batch_size,))

  def testLogitsNotSqueezed(self):
    num_classes = 25
    images = tf.random_uniform([1, 224, 224, 3])
    logits, _ = inception.inception_v1(images,
                                       num_classes=num_classes,
                                       spatial_squeeze=False)

    with self.test_session() as sess:
268
      tf.global_variables_initializer().run()
269
270
271
      logits_out = sess.run(logits)
      self.assertListEqual(list(logits_out.shape), [1, 1, 1, num_classes])

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
  def testNoBatchNormScaleByDefault(self):
    height, width = 224, 224
    num_classes = 1000
    inputs = tf.placeholder(tf.float32, (1, height, width, 3))
    with slim.arg_scope(inception.inception_v1_arg_scope()):
      inception.inception_v1(inputs, num_classes, is_training=False)

    self.assertEqual(tf.global_variables('.*/BatchNorm/gamma:0$'), [])

  def testBatchNormScale(self):
    height, width = 224, 224
    num_classes = 1000
    inputs = tf.placeholder(tf.float32, (1, height, width, 3))
    with slim.arg_scope(
        inception.inception_v1_arg_scope(batch_norm_scale=True)):
      inception.inception_v1(inputs, num_classes, is_training=False)

    gamma_names = set(
        v.op.name for v in tf.global_variables('.*/BatchNorm/gamma:0$'))
    self.assertGreater(len(gamma_names), 0)
    for v in tf.global_variables('.*/BatchNorm/moving_mean:0$'):
      self.assertIn(v.op.name[:-len('moving_mean')] + 'gamma', gamma_names)

295
296
297

if __name__ == '__main__':
  tf.test.main()