eval_image_classifier.py 6.51 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Generic evaluation script that evaluates a model using a given dataset."""
16
17
18
19
20
21
22
23

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import tensorflow as tf

24
25
26
from datasets import dataset_factory
from nets import nets_factory
from preprocessing import preprocessing_factory
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

slim = tf.contrib.slim

tf.app.flags.DEFINE_integer(
    'batch_size', 100, 'The number of samples in each batch.')

tf.app.flags.DEFINE_integer(
    'max_num_batches', None,
    'Max number of batches to evaluate by default use all.')

tf.app.flags.DEFINE_string(
    'master', '', 'The address of the TensorFlow master to use.')

tf.app.flags.DEFINE_string(
    'checkpoint_path', '/tmp/tfmodel/',
    'The directory where the model was written to or an absolute path to a '
    'checkpoint file.')

tf.app.flags.DEFINE_string(
    'eval_dir', '/tmp/tfmodel/', 'Directory where the results are saved to.')

tf.app.flags.DEFINE_integer(
    'num_preprocessing_threads', 4,
    'The number of threads used to create the batches.')

tf.app.flags.DEFINE_string(
    'dataset_name', 'imagenet', 'The name of the dataset to load.')

tf.app.flags.DEFINE_string(
56
    'dataset_split_name', 'test', 'The name of the train/test split.')
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

tf.app.flags.DEFINE_string(
    'dataset_dir', None, 'The directory where the dataset files are stored.')

tf.app.flags.DEFINE_integer(
    'labels_offset', 0,
    'An offset for the labels in the dataset. This flag is primarily used to '
    'evaluate the VGG and ResNet architectures which do not use a background '
    'class for the ImageNet dataset.')

tf.app.flags.DEFINE_string(
    'model_name', 'inception_v3', 'The name of the architecture to evaluate.')

tf.app.flags.DEFINE_string(
    'preprocessing_name', None, 'The name of the preprocessing to use. If left '
    'as `None`, then the model_name flag is used.')

tf.app.flags.DEFINE_float(
    'moving_average_decay', None,
    'The decay to use for the moving average.'
    'If left as None, then moving averages are not used.')

79
80
81
tf.app.flags.DEFINE_integer(
    'eval_image_size', None, 'Eval image size')

82
83
84
85
FLAGS = tf.app.flags.FLAGS


def main(_):
86
87
88
89
  if not FLAGS.dataset_dir:
    raise ValueError('You must supply the dataset directory with --dataset_dir')

  tf.logging.set_verbosity(tf.logging.INFO)
90
91
92
93
94
95
96
97
98
99
100
101
  with tf.Graph().as_default():
    tf_global_step = slim.get_or_create_global_step()

    ######################
    # Select the dataset #
    ######################
    dataset = dataset_factory.get_dataset(
        FLAGS.dataset_name, FLAGS.dataset_split_name, FLAGS.dataset_dir)

    ####################
    # Select the model #
    ####################
102
    network_fn = nets_factory.get_network_fn(
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        FLAGS.model_name,
        num_classes=(dataset.num_classes - FLAGS.labels_offset),
        is_training=False)

    ##############################################################
    # Create a dataset provider that loads data from the dataset #
    ##############################################################
    provider = slim.dataset_data_provider.DatasetDataProvider(
        dataset,
        shuffle=False,
        common_queue_capacity=2 * FLAGS.batch_size,
        common_queue_min=FLAGS.batch_size)
    [image, label] = provider.get(['image', 'label'])
    label -= FLAGS.labels_offset

    #####################################
    # Select the preprocessing function #
    #####################################
    preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
    image_preprocessing_fn = preprocessing_factory.get_preprocessing(
        preprocessing_name,
        is_training=False)

126
127
128
    eval_image_size = FLAGS.eval_image_size or network_fn.default_image_size

    image = image_preprocessing_fn(image, eval_image_size, eval_image_size)
129
130
131
132
133
134
135
136
137
138

    images, labels = tf.train.batch(
        [image, label],
        batch_size=FLAGS.batch_size,
        num_threads=FLAGS.num_preprocessing_threads,
        capacity=5 * FLAGS.batch_size)

    ####################
    # Define the model #
    ####################
139
    logits, _ = network_fn(images)
140
141
142
143
144
145

    if FLAGS.moving_average_decay:
      variable_averages = tf.train.ExponentialMovingAverage(
          FLAGS.moving_average_decay, tf_global_step)
      variables_to_restore = variable_averages.variables_to_restore(
          slim.get_model_variables())
146
      variables_to_restore[tf_global_step.op.name] = tf_global_step
147
    else:
148
      variables_to_restore = slim.get_variables_to_restore()
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

    predictions = tf.argmax(logits, 1)
    labels = tf.squeeze(labels)

    # Define the metrics:
    names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({
        'Accuracy': slim.metrics.streaming_accuracy(predictions, labels),
        'Recall@5': slim.metrics.streaming_recall_at_k(
            logits, labels, 5),
    })

    # Print the summaries to screen.
    for name, value in names_to_values.iteritems():
      summary_name = 'eval/%s' % name
      op = tf.scalar_summary(summary_name, value, collections=[])
      op = tf.Print(op, [value], summary_name)
      tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

    # TODO(sguada) use num_epochs=1
    if FLAGS.max_num_batches:
      num_batches = FLAGS.max_num_batches
    else:
      # This ensures that we make a single pass over all of the data.
      num_batches = math.ceil(dataset.num_samples / float(FLAGS.batch_size))

    if tf.gfile.IsDirectory(FLAGS.checkpoint_path):
      checkpoint_path = tf.train.latest_checkpoint(FLAGS.checkpoint_path)
    else:
      checkpoint_path = FLAGS.checkpoint_path

    tf.logging.info('Evaluating %s' % checkpoint_path)

    slim.evaluation.evaluate_once(
182
183
        master=FLAGS.master,
        checkpoint_path=checkpoint_path,
184
185
186
187
188
189
190
191
        logdir=FLAGS.eval_dir,
        num_evals=num_batches,
        eval_op=names_to_updates.values(),
        variables_to_restore=variables_to_restore)


if __name__ == '__main__':
  tf.app.run()