download_and_convert_flowers.py 7.03 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Downloads and converts Flowers data to TFRecords of TF-Example protos.

17
This module downloads the Flowers data, uncompresses it, reads the files
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
that make up the Flowers data and creates two TFRecord datasets: one for train
and one for test. Each TFRecord dataset is comprised of a set of TF-Example
protocol buffers, each of which contain a single image and label.

The script should take about a minute to run.

"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import os
import random
import sys

import tensorflow as tf

37
from datasets import dataset_utils
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

# The URL where the Flowers data can be downloaded.
_DATA_URL = 'http://download.tensorflow.org/example_images/flower_photos.tgz'

# The number of images in the validation set.
_NUM_VALIDATION = 350

# Seed for repeatability.
_RANDOM_SEED = 0

# The number of shards per dataset split.
_NUM_SHARDS = 5


class ImageReader(object):
  """Helper class that provides TensorFlow image coding utilities."""

  def __init__(self):
    # Initializes function that decodes RGB JPEG data.
    self._decode_jpeg_data = tf.placeholder(dtype=tf.string)
    self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3)

  def read_image_dims(self, sess, image_data):
    image = self.decode_jpeg(sess, image_data)
    return image.shape[0], image.shape[1]

  def decode_jpeg(self, sess, image_data):
    image = sess.run(self._decode_jpeg,
                     feed_dict={self._decode_jpeg_data: image_data})
    assert len(image.shape) == 3
    assert image.shape[2] == 3
    return image


def _get_filenames_and_classes(dataset_dir):
  """Returns a list of filenames and inferred class names.

  Args:
    dataset_dir: A directory containing a set of subdirectories representing
      class names. Each subdirectory should contain PNG or JPG encoded images.

  Returns:
    A list of image file paths, relative to `dataset_dir` and the list of
    subdirectories, representing class names.
  """
  flower_root = os.path.join(dataset_dir, 'flower_photos')
  directories = []
  class_names = []
  for filename in os.listdir(flower_root):
    path = os.path.join(flower_root, filename)
    if os.path.isdir(path):
      directories.append(path)
      class_names.append(filename)

  photo_filenames = []
  for directory in directories:
    for filename in os.listdir(directory):
      path = os.path.join(directory, filename)
      photo_filenames.append(path)

  return photo_filenames, sorted(class_names)


101
102
103
104
105
106
def _get_dataset_filename(dataset_dir, split_name, shard_id):
  output_filename = 'flowers_%s_%05d-of-%05d.tfrecord' % (
      split_name, shard_id, _NUM_SHARDS)
  return os.path.join(dataset_dir, output_filename)


107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
def _convert_dataset(split_name, filenames, class_names_to_ids, dataset_dir):
  """Converts the given filenames to a TFRecord dataset.

  Args:
    split_name: The name of the dataset, either 'train' or 'validation'.
    filenames: A list of absolute paths to png or jpg images.
    class_names_to_ids: A dictionary from class names (strings) to ids
      (integers).
    dataset_dir: The directory where the converted datasets are stored.
  """
  assert split_name in ['train', 'validation']

  num_per_shard = int(math.ceil(len(filenames) / float(_NUM_SHARDS)))

  with tf.Graph().as_default():
    image_reader = ImageReader()

    with tf.Session('') as sess:

      for shard_id in range(_NUM_SHARDS):
127
128
        output_filename = _get_dataset_filename(
            dataset_dir, split_name, shard_id)
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

        with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
          start_ndx = shard_id * num_per_shard
          end_ndx = min((shard_id+1) * num_per_shard, len(filenames))
          for i in range(start_ndx, end_ndx):
            sys.stdout.write('\r>> Converting image %d/%d shard %d' % (
                i+1, len(filenames), shard_id))
            sys.stdout.flush()

            # Read the filename:
            image_data = tf.gfile.FastGFile(filenames[i], 'r').read()
            height, width = image_reader.read_image_dims(sess, image_data)

            class_name = os.path.basename(os.path.dirname(filenames[i]))
            class_id = class_names_to_ids[class_name]

            example = dataset_utils.image_to_tfexample(
                image_data, 'jpg', height, width, class_id)
            tfrecord_writer.write(example.SerializeToString())

  sys.stdout.write('\n')
  sys.stdout.flush()


def _clean_up_temporary_files(dataset_dir):
  """Removes temporary files used to create the dataset.

  Args:
    dataset_dir: The directory where the temporary files are stored.
  """
  filename = _DATA_URL.split('/')[-1]
  filepath = os.path.join(dataset_dir, filename)
  tf.gfile.Remove(filepath)

  tmp_dir = os.path.join(dataset_dir, 'flower_photos')
  tf.gfile.DeleteRecursively(tmp_dir)


167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
def _dataset_exists(dataset_dir):
  for split_name in ['train', 'validation']:
    for shard_id in range(_NUM_SHARDS):
      output_filename = _get_dataset_filename(
          dataset_dir, split_name, shard_id)
      if not tf.gfile.Exists(output_filename):
        return False
  return True


def run(dataset_dir):
  """Runs the download and conversion operation.

  Args:
    dataset_dir: The dataset directory where the dataset is stored.
  """
  if not tf.gfile.Exists(dataset_dir):
    tf.gfile.MakeDirs(dataset_dir)
185

186
187
188
  if _dataset_exists(dataset_dir):
    print('Dataset files already exist. Exiting without re-creating them.')
    return
189

190
191
  dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir)
  photo_filenames, class_names = _get_filenames_and_classes(dataset_dir)
192
193
194
195
196
197
198
199
200
201
  class_names_to_ids = dict(zip(class_names, range(len(class_names))))

  # Divide into train and test:
  random.seed(_RANDOM_SEED)
  random.shuffle(photo_filenames)
  training_filenames = photo_filenames[_NUM_VALIDATION:]
  validation_filenames = photo_filenames[:_NUM_VALIDATION]

  # First, convert the training and validation sets.
  _convert_dataset('train', training_filenames, class_names_to_ids,
202
                   dataset_dir)
203
  _convert_dataset('validation', validation_filenames, class_names_to_ids,
204
                   dataset_dir)
205
206
207

  # Finally, write the labels file:
  labels_to_class_names = dict(zip(range(len(class_names)), class_names))
208
  dataset_utils.write_label_file(labels_to_class_names, dataset_dir)
209

210
  _clean_up_temporary_files(dataset_dir)
211
212
  print('\nFinished converting the Flowers dataset!')