model_lib.py 28.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
r"""Constructs model, inputs, and training environment."""
16
17
18
19
20
21

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools
22
import os
23
24
25
26
27
28
29
30
31
32
33
34
35
36

import tensorflow as tf

from object_detection import eval_util
from object_detection import inputs
from object_detection.builders import model_builder
from object_detection.builders import optimizer_builder
from object_detection.core import standard_fields as fields
from object_detection.utils import config_util
from object_detection.utils import label_map_util
from object_detection.utils import shape_utils
from object_detection.utils import variables_helper
from object_detection.utils import visualization_utils as vis_utils

37
38
39
40
41
42
43
44
45
46
47
48
49
50
# A map of names to methods that help build the model.
MODEL_BUILD_UTIL_MAP = {
    'get_configs_from_pipeline_file':
        config_util.get_configs_from_pipeline_file,
    'create_pipeline_proto_from_configs':
        config_util.create_pipeline_proto_from_configs,
    'merge_external_params_with_configs':
        config_util.merge_external_params_with_configs,
    'create_train_input_fn': inputs.create_train_input_fn,
    'create_eval_input_fn': inputs.create_eval_input_fn,
    'create_predict_input_fn': inputs.create_predict_input_fn,
}


51
52
def _prepare_groundtruth_for_eval(detection_model, class_agnostic):
  """Extracts groundtruth data from detection_model and prepares it for eval.
53
54
55
56
57
58
59
60
61
62
63
64
65

  Args:
    detection_model: A `DetectionModel` object.
    class_agnostic: Whether the detections are class_agnostic.

  Returns:
    A tuple of:
    groundtruth: Dictionary with the following fields:
      'groundtruth_boxes': [num_boxes, 4] float32 tensor of boxes, in
        normalized coordinates.
      'groundtruth_classes': [num_boxes] int64 tensor of 1-indexed classes.
      'groundtruth_masks': 3D float32 tensor of instance masks (if provided in
        groundtruth)
66
67
      'groundtruth_is_crowd': [num_boxes] bool tensor indicating is_crowd
        annotations (if provided in groundtruth).
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
    class_agnostic: Boolean indicating whether detections are class agnostic.
  """
  input_data_fields = fields.InputDataFields()
  groundtruth_boxes = detection_model.groundtruth_lists(
      fields.BoxListFields.boxes)[0]
  # For class-agnostic models, groundtruth one-hot encodings collapse to all
  # ones.
  if class_agnostic:
    groundtruth_boxes_shape = tf.shape(groundtruth_boxes)
    groundtruth_classes_one_hot = tf.ones([groundtruth_boxes_shape[0], 1])
  else:
    groundtruth_classes_one_hot = detection_model.groundtruth_lists(
        fields.BoxListFields.classes)[0]
  label_id_offset = 1  # Applying label id offset (b/63711816)
  groundtruth_classes = (
      tf.argmax(groundtruth_classes_one_hot, axis=1) + label_id_offset)
  groundtruth = {
      input_data_fields.groundtruth_boxes: groundtruth_boxes,
      input_data_fields.groundtruth_classes: groundtruth_classes
  }
  if detection_model.groundtruth_has_field(fields.BoxListFields.masks):
    groundtruth[input_data_fields.groundtruth_instance_masks] = (
        detection_model.groundtruth_lists(fields.BoxListFields.masks)[0])
91
92
93
  if detection_model.groundtruth_has_field(fields.BoxListFields.is_crowd):
    groundtruth[input_data_fields.groundtruth_is_crowd] = (
        detection_model.groundtruth_lists(fields.BoxListFields.is_crowd)[0])
94
95
96
97
98
99
100
101
102
103
104
105
106
107
  return groundtruth


def unstack_batch(tensor_dict, unpad_groundtruth_tensors=True):
  """Unstacks all tensors in `tensor_dict` along 0th dimension.

  Unstacks tensor from the tensor dict along 0th dimension and returns a
  tensor_dict containing values that are lists of unstacked tensors.

  Tensors in the `tensor_dict` are expected to be of one of the three shapes:
  1. [batch_size]
  2. [batch_size, height, width, channels]
  3. [batch_size, num_boxes, d1, d2, ... dn]

108
109
  When unpad_groundtruth_tensors is set to true, unstacked tensors of form 3
  above are sliced along the `num_boxes` dimension using the value in tensor
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
  field.InputDataFields.num_groundtruth_boxes.

  Note that this function has a static list of input data fields and has to be
  kept in sync with the InputDataFields defined in core/standard_fields.py

  Args:
    tensor_dict: A dictionary of batched groundtruth tensors.
    unpad_groundtruth_tensors: Whether to remove padding along `num_boxes`
      dimension of the groundtruth tensors.

  Returns:
    A dictionary where the keys are from fields.InputDataFields and values are
    a list of unstacked (optionally unpadded) tensors.

  Raises:
    ValueError: If unpad_tensors is True and `tensor_dict` does not contain
      `num_groundtruth_boxes` tensor.
  """
  unbatched_tensor_dict = {key: tf.unstack(tensor)
                           for key, tensor in tensor_dict.items()}
  if unpad_groundtruth_tensors:
    if (fields.InputDataFields.num_groundtruth_boxes not in
        unbatched_tensor_dict):
      raise ValueError('`num_groundtruth_boxes` not found in tensor_dict. '
                       'Keys available: {}'.format(
                           unbatched_tensor_dict.keys()))
    unbatched_unpadded_tensor_dict = {}
    unpad_keys = set([
        # List of input data fields that are padded along the num_boxes
        # dimension. This list has to be kept in sync with InputDataFields in
        # standard_fields.py.
        fields.InputDataFields.groundtruth_instance_masks,
        fields.InputDataFields.groundtruth_classes,
        fields.InputDataFields.groundtruth_boxes,
        fields.InputDataFields.groundtruth_keypoints,
        fields.InputDataFields.groundtruth_group_of,
        fields.InputDataFields.groundtruth_difficult,
        fields.InputDataFields.groundtruth_is_crowd,
        fields.InputDataFields.groundtruth_area,
        fields.InputDataFields.groundtruth_weights
    ]).intersection(set(unbatched_tensor_dict.keys()))

    for key in unpad_keys:
      unpadded_tensor_list = []
      for num_gt, padded_tensor in zip(
          unbatched_tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
          unbatched_tensor_dict[key]):
        tensor_shape = shape_utils.combined_static_and_dynamic_shape(
            padded_tensor)
        slice_begin = tf.zeros([len(tensor_shape)], dtype=tf.int32)
        slice_size = tf.stack(
            [num_gt] + [-1 if dim is None else dim for dim in tensor_shape[1:]])
        unpadded_tensor = tf.slice(padded_tensor, slice_begin, slice_size)
        unpadded_tensor_list.append(unpadded_tensor)
      unbatched_unpadded_tensor_dict[key] = unpadded_tensor_list
    unbatched_tensor_dict.update(unbatched_unpadded_tensor_dict)

  return unbatched_tensor_dict


def create_model_fn(detection_model_fn, configs, hparams, use_tpu=False):
  """Creates a model function for `Estimator`.

  Args:
    detection_model_fn: Function that returns a `DetectionModel` instance.
    configs: Dictionary of pipeline config objects.
    hparams: `HParams` object.
    use_tpu: Boolean indicating whether model should be constructed for
        use on TPU.

  Returns:
    `model_fn` for `Estimator`.
  """
  train_config = configs['train_config']
  eval_input_config = configs['eval_input_config']
185
  eval_config = configs['eval_config']
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

  def model_fn(features, labels, mode, params=None):
    """Constructs the object detection model.

    Args:
      features: Dictionary of feature tensors, returned from `input_fn`.
      labels: Dictionary of groundtruth tensors if mode is TRAIN or EVAL,
        otherwise None.
      mode: Mode key from tf.estimator.ModeKeys.
      params: Parameter dictionary passed from the estimator.

    Returns:
      An `EstimatorSpec` that encapsulates the model and its serving
        configurations.
    """
    params = params or {}
    total_loss, train_op, detections, export_outputs = None, None, None, None
    is_training = mode == tf.estimator.ModeKeys.TRAIN
    detection_model = detection_model_fn(is_training=is_training,
                                         add_summaries=(not use_tpu))
    scaffold_fn = None

    if mode == tf.estimator.ModeKeys.TRAIN:
      labels = unstack_batch(
          labels,
          unpad_groundtruth_tensors=train_config.unpad_groundtruth_tensors)
    elif mode == tf.estimator.ModeKeys.EVAL:
213
214
215
216
217
218
219
220
      # For evaling on train data, it is necessary to check whether groundtruth
      # must be unpadded.
      boxes_shape = (
          labels[fields.InputDataFields.groundtruth_boxes].get_shape()
          .as_list())
      unpad_groundtruth_tensors = True if boxes_shape[1] is not None else False
      labels = unstack_batch(
          labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors)
221
222
223
224
225
226
227
228
229
230
231

    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
      gt_boxes_list = labels[fields.InputDataFields.groundtruth_boxes]
      gt_classes_list = labels[fields.InputDataFields.groundtruth_classes]
      gt_masks_list = None
      if fields.InputDataFields.groundtruth_instance_masks in labels:
        gt_masks_list = labels[
            fields.InputDataFields.groundtruth_instance_masks]
      gt_keypoints_list = None
      if fields.InputDataFields.groundtruth_keypoints in labels:
        gt_keypoints_list = labels[fields.InputDataFields.groundtruth_keypoints]
232
233
      if fields.InputDataFields.groundtruth_is_crowd in labels:
        gt_is_crowd_list = labels[fields.InputDataFields.groundtruth_is_crowd]
234
235
236
237
      detection_model.provide_groundtruth(
          groundtruth_boxes_list=gt_boxes_list,
          groundtruth_classes_list=gt_classes_list,
          groundtruth_masks_list=gt_masks_list,
238
239
          groundtruth_keypoints_list=gt_keypoints_list,
          groundtruth_weights_list=labels[
240
241
              fields.InputDataFields.groundtruth_weights],
          groundtruth_is_crowd_list=gt_is_crowd_list)
242
243
244
245
246
247
248
249
250

    preprocessed_images = features[fields.InputDataFields.image]
    prediction_dict = detection_model.predict(
        preprocessed_images, features[fields.InputDataFields.true_image_shape])
    detections = detection_model.postprocess(
        prediction_dict, features[fields.InputDataFields.true_image_shape])

    if mode == tf.estimator.ModeKeys.TRAIN:
      if train_config.fine_tune_checkpoint and hparams.load_pretrained:
251
252
253
254
255
256
257
258
        if not train_config.fine_tune_checkpoint_type:
          # train_config.from_detection_checkpoint field is deprecated. For
          # backward compatibility, set train_config.fine_tune_checkpoint_type
          # based on train_config.from_detection_checkpoint.
          if train_config.from_detection_checkpoint:
            train_config.fine_tune_checkpoint_type = 'detection'
          else:
            train_config.fine_tune_checkpoint_type = 'classification'
259
        asg_map = detection_model.restore_map(
260
            fine_tune_checkpoint_type=train_config.fine_tune_checkpoint_type,
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
            load_all_detection_checkpoint_vars=(
                train_config.load_all_detection_checkpoint_vars))
        available_var_map = (
            variables_helper.get_variables_available_in_checkpoint(
                asg_map, train_config.fine_tune_checkpoint,
                include_global_step=False))
        if use_tpu:
          def tpu_scaffold():
            tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint,
                                          available_var_map)
            return tf.train.Scaffold()
          scaffold_fn = tpu_scaffold
        else:
          tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint,
                                        available_var_map)

    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
      losses_dict = detection_model.loss(
          prediction_dict, features[fields.InputDataFields.true_image_shape])
      losses = [loss_tensor for loss_tensor in losses_dict.itervalues()]
281
282
283
284
285
286
287
      if train_config.add_regularization_loss:
        regularization_losses = tf.get_collection(
            tf.GraphKeys.REGULARIZATION_LOSSES)
        if regularization_losses:
          regularization_loss = tf.add_n(regularization_losses,
                                         name='regularization_loss')
          losses.append(regularization_loss)
288
          losses_dict['Loss/regularization_loss'] = regularization_loss
289
      total_loss = tf.add_n(losses, name='total_loss')
290
      losses_dict['Loss/total_loss'] = total_loss
291

292
293
294
    if mode in [tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL]:
      # TODO(rathodv): Stop creating optimizer summary vars in EVAL mode once we
      # can write learning rate summaries on TPU without host calls.
295
296
297
298
      global_step = tf.train.get_or_create_global_step()
      training_optimizer, optimizer_summary_vars = optimizer_builder.build(
          train_config.optimizer)

299
    if mode == tf.estimator.ModeKeys.TRAIN:
300
      if use_tpu:
301
        training_optimizer = tf.contrib.tpu.CrossShardOptimizer(
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
            training_optimizer)

      # Optionally freeze some layers by setting their gradients to be zero.
      trainable_variables = None
      if train_config.freeze_variables:
        trainable_variables = tf.contrib.framework.filter_variables(
            tf.trainable_variables(),
            exclude_patterns=train_config.freeze_variables)

      clip_gradients_value = None
      if train_config.gradient_clipping_by_norm > 0:
        clip_gradients_value = train_config.gradient_clipping_by_norm

      if not use_tpu:
        for var in optimizer_summary_vars:
          tf.summary.scalar(var.op.name, var)
      summaries = [] if use_tpu else None
      train_op = tf.contrib.layers.optimize_loss(
          loss=total_loss,
          global_step=global_step,
          learning_rate=None,
          clip_gradients=clip_gradients_value,
          optimizer=training_optimizer,
          variables=trainable_variables,
          summaries=summaries,
          name='')  # Preventing scope prefix on all variables.

    if mode == tf.estimator.ModeKeys.PREDICT:
      export_outputs = {
          tf.saved_model.signature_constants.PREDICT_METHOD_NAME:
              tf.estimator.export.PredictOutput(detections)
      }

    eval_metric_ops = None
336
    if mode == tf.estimator.ModeKeys.EVAL:
337
338
      class_agnostic = (fields.DetectionResultFields.detection_classes
                        not in detections)
339
340
      groundtruth = _prepare_groundtruth_for_eval(
          detection_model, class_agnostic)
341
      use_original_images = fields.InputDataFields.original_image in features
342
      eval_images = (
343
344
          features[fields.InputDataFields.original_image] if use_original_images
          else features[fields.InputDataFields.image])
345
      eval_dict = eval_util.result_dict_for_single_example(
346
          eval_images[0:1],
347
348
349
350
          features[inputs.HASH_KEY][0],
          detections,
          groundtruth,
          class_agnostic=class_agnostic,
351
          scale_to_absolute=True)
352
353
354
355
356
357

      if class_agnostic:
        category_index = label_map_util.create_class_agnostic_category_index()
      else:
        category_index = label_map_util.create_category_index_from_labelmap(
            eval_input_config.label_map_path)
358
      img_summary = None
359
      if not use_tpu and use_original_images:
360
361
362
363
        detection_and_groundtruth = (
            vis_utils.draw_side_by_side_evaluation_image(
                eval_dict, category_index, max_boxes_to_draw=20,
                min_score_thresh=0.2))
364
365
366
        img_summary = tf.summary.image('Detections_Left_Groundtruth_Right',
                                       detection_and_groundtruth)

367
368
369
370
371
      # Eval metrics on a single example.
      eval_metrics = eval_config.metrics_set
      if not eval_metrics:
        eval_metrics = ['coco_detection_metrics']
      eval_metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
372
373
374
375
          eval_metrics,
          category_index.values(),
          eval_dict,
          include_metrics_per_category=eval_config.include_metrics_per_category)
376
377
378
379
380
381
382
383
      for loss_key, loss_tensor in iter(losses_dict.items()):
        eval_metric_ops[loss_key] = tf.metrics.mean(loss_tensor)
      for var in optimizer_summary_vars:
        eval_metric_ops[var.op.name] = (var, tf.no_op())
      if img_summary is not None:
        eval_metric_ops['Detections_Left_Groundtruth_Right'] = (
            img_summary, tf.no_op())
      eval_metric_ops = {str(k): v for k, v in eval_metric_ops.iteritems()}
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

    if use_tpu:
      return tf.contrib.tpu.TPUEstimatorSpec(
          mode=mode,
          scaffold_fn=scaffold_fn,
          predictions=detections,
          loss=total_loss,
          train_op=train_op,
          eval_metrics=eval_metric_ops,
          export_outputs=export_outputs)
    else:
      return tf.estimator.EstimatorSpec(
          mode=mode,
          predictions=detections,
          loss=total_loss,
          train_op=train_op,
          eval_metric_ops=eval_metric_ops,
          export_outputs=export_outputs)

  return model_fn


406
407
408
409
410
411
412
413
414
415
416
417
def create_estimator_and_inputs(run_config,
                                hparams,
                                pipeline_config_path,
                                train_steps=None,
                                eval_steps=None,
                                model_fn_creator=create_model_fn,
                                use_tpu_estimator=False,
                                use_tpu=False,
                                num_shards=1,
                                params=None,
                                **kwargs):
  """Creates `Estimator`, input functions, and steps.
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436

  Args:
    run_config: A `RunConfig`.
    hparams: A `HParams`.
    pipeline_config_path: A path to a pipeline config file.
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
    eval_steps: Number of evaluation steps per evaluation cycle. If None, the
      number of evaluation steps is set from the `EvalConfig` proto.
    model_fn_creator: A function that creates a `model_fn` for `Estimator`.
      Follows the signature:

      * Args:
        * `detection_model_fn`: Function that returns `DetectionModel` instance.
        * `configs`: Dictionary of pipeline config objects.
        * `hparams`: `HParams` object.
      * Returns:
        `model_fn` for `Estimator`.

437
438
439
440
441
442
443
444
    use_tpu_estimator: Whether a `TPUEstimator` should be returned. If False,
      an `Estimator` will be returned.
    use_tpu: Boolean, whether training and evaluation should run on TPU. Only
      used if `use_tpu_estimator` is True.
    num_shards: Number of shards (TPU cores). Only used if `use_tpu_estimator`
      is True.
    params: Parameter dictionary passed from the estimator. Only used if
      `use_tpu_estimator` is True.
445
446
447
    **kwargs: Additional keyword arguments for configuration override.

  Returns:
448
449
450
451
    A dictionary with the following fields:
    'estimator': An `Estimator` or `TPUEstimator`.
    'train_input_fn': A training input function.
    'eval_input_fn': An evaluation input function.
452
    'eval_on_train_input_fn': An evaluation-on-train input function.
453
454
455
456
457
    'predict_input_fn': A prediction input function.
    'train_steps': Number of training steps. Either directly from input or from
      configuration.
    'eval_steps': Number of evaluation steps. Either directly from input or from
      configuration.
458
  """
459
460
461
462
  get_configs_from_pipeline_file = MODEL_BUILD_UTIL_MAP[
      'get_configs_from_pipeline_file']
  merge_external_params_with_configs = MODEL_BUILD_UTIL_MAP[
      'merge_external_params_with_configs']
463
464
  create_pipeline_proto_from_configs = MODEL_BUILD_UTIL_MAP[
      'create_pipeline_proto_from_configs']
465
466
467
468
469
470
  create_train_input_fn = MODEL_BUILD_UTIL_MAP['create_train_input_fn']
  create_eval_input_fn = MODEL_BUILD_UTIL_MAP['create_eval_input_fn']
  create_predict_input_fn = MODEL_BUILD_UTIL_MAP['create_predict_input_fn']

  configs = get_configs_from_pipeline_file(pipeline_config_path)
  configs = merge_external_params_with_configs(
471
472
473
474
475
476
477
478
479
480
481
      configs,
      hparams,
      train_steps=train_steps,
      eval_steps=eval_steps,
      **kwargs)
  model_config = configs['model']
  train_config = configs['train_config']
  train_input_config = configs['train_input_config']
  eval_config = configs['eval_config']
  eval_input_config = configs['eval_input_config']

482
483
  if train_steps is None:
    train_steps = configs['train_config'].num_steps
484

485
486
  if eval_steps is None:
    eval_steps = configs['eval_config'].num_examples
487
488
489
490

  detection_model_fn = functools.partial(
      model_builder.build, model_config=model_config)

491
  # Create the input functions for TRAIN/EVAL/PREDICT.
492
  train_input_fn = create_train_input_fn(
493
494
495
      train_config=train_config,
      train_input_config=train_input_config,
      model_config=model_config)
496
  eval_input_fn = create_eval_input_fn(
497
498
499
      eval_config=eval_config,
      eval_input_config=eval_input_config,
      model_config=model_config)
500
501
502
503
  eval_on_train_input_fn = create_eval_input_fn(
      eval_config=eval_config,
      eval_input_config=train_input_config,
      model_config=model_config)
504
505
506
507
  predict_input_fn = create_predict_input_fn(model_config=model_config)

  model_fn = model_fn_creator(detection_model_fn, configs, hparams, use_tpu)
  if use_tpu_estimator:
508
    estimator = tf.contrib.tpu.TPUEstimator(
509
510
511
512
513
514
515
516
517
        model_fn=model_fn,
        train_batch_size=train_config.batch_size,
        # For each core, only batch size 1 is supported for eval.
        eval_batch_size=num_shards * 1 if use_tpu else 1,
        use_tpu=use_tpu,
        config=run_config,
        params=params if params else {})
  else:
    estimator = tf.estimator.Estimator(model_fn=model_fn, config=run_config)
518

519
  # Write the as-run pipeline config to disk.
520
  if run_config.is_chief:
521
    pipeline_config_final = create_pipeline_proto_from_configs(
522
        configs)
523
    config_util.save_pipeline_config(pipeline_config_final, estimator.model_dir)
524

525
  return dict(
526
527
528
      estimator=estimator,
      train_input_fn=train_input_fn,
      eval_input_fn=eval_input_fn,
529
      eval_on_train_input_fn=eval_on_train_input_fn,
530
      predict_input_fn=predict_input_fn,
531
      train_steps=train_steps,
532
533
534
535
536
      eval_steps=eval_steps)


def create_train_and_eval_specs(train_input_fn,
                                eval_input_fn,
537
                                eval_on_train_input_fn,
538
539
540
541
                                predict_input_fn,
                                train_steps,
                                eval_steps,
                                eval_on_train_data=False,
542
                                eval_on_train_steps=None,
543
544
545
546
547
548
549
                                final_exporter_name='Servo',
                                eval_spec_name='eval'):
  """Creates a `TrainSpec` and `EvalSpec`s.

  Args:
    train_input_fn: Function that produces features and labels on train data.
    eval_input_fn: Function that produces features and labels on eval data.
550
551
    eval_on_train_input_fn: Function that produces features and labels for
      evaluation on train data.
552
553
554
555
556
    predict_input_fn: Function that produces features for inference.
    train_steps: Number of training steps.
    eval_steps: Number of eval steps.
    eval_on_train_data: Whether to evaluate model on training data. Default is
      False.
557
558
    eval_on_train_steps: Number of eval steps for training data. If not given,
      uses eval_steps.
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
    final_exporter_name: String name given to `FinalExporter`.
    eval_spec_name: String name given to main `EvalSpec`.

  Returns:
    Tuple of `TrainSpec` and list of `EvalSpecs`. The first `EvalSpec` is for
    evaluation data. If `eval_on_train_data` is True, the second `EvalSpec` in
    the list will correspond to training data.
  """

  exporter = tf.estimator.FinalExporter(
      name=final_exporter_name, serving_input_receiver_fn=predict_input_fn)

  train_spec = tf.estimator.TrainSpec(
      input_fn=train_input_fn, max_steps=train_steps)

  eval_specs = [
      tf.estimator.EvalSpec(
          name=eval_spec_name,
          input_fn=eval_input_fn,
          steps=eval_steps,
          exporters=exporter)
  ]

  if eval_on_train_data:
    eval_specs.append(
        tf.estimator.EvalSpec(
585
            name='eval_on_train', input_fn=eval_on_train_input_fn,
586
            steps=eval_on_train_steps or eval_steps))
587
588

  return train_spec, eval_specs
589
590


591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
def continuous_eval(estimator, model_dir, input_fn, eval_steps, train_steps,
                    name):
  """Perform continuous evaluation on checkpoints written to a model directory.

  Args:
    estimator: Estimator object to use for evaluation.
    model_dir: Model directory to read checkpoints for continuous evaluation.
    input_fn: Input function to use for evaluation.
    eval_steps: Number of steps to run during each evaluation.
    train_steps: Number of training steps. This is used to infer the last
      checkpoint and stop evaluation loop.
    name: Namescope for eval summary.
  """
  def terminate_eval():
    tf.logging.info('Terminating eval after 180 seconds of no checkpoints')
    return True

  for ckpt in tf.contrib.training.checkpoints_iterator(
      model_dir, min_interval_secs=180, timeout=None,
      timeout_fn=terminate_eval):

    tf.logging.info('Starting Evaluation.')
    try:
      eval_results = estimator.evaluate(
          input_fn=input_fn,
          steps=eval_steps,
          checkpoint_path=ckpt,
          name=name)
      tf.logging.info('Eval results: %s' % eval_results)

      # Terminate eval job when final checkpoint is reached
      current_step = int(os.path.basename(ckpt).split('-')[1])
      if current_step >= train_steps:
        tf.logging.info(
            'Evaluation finished after training step %d' % current_step)
        break

    except tf.errors.NotFoundError:
      tf.logging.info(
          'Checkpoint %s no longer exists, skipping checkpoint' % ckpt)


633
634
635
636
637
638
639
640
def populate_experiment(run_config,
                        hparams,
                        pipeline_config_path,
                        train_steps=None,
                        eval_steps=None,
                        model_fn_creator=create_model_fn,
                        **kwargs):
  """Populates an `Experiment` object.
641

642
643
  EXPERIMENT CLASS IS DEPRECATED. Please switch to
  tf.estimator.train_and_evaluate. As an example, see model_main.py.
644

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
  Args:
    run_config: A `RunConfig`.
    hparams: A `HParams`.
    pipeline_config_path: A path to a pipeline config file.
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
    eval_steps: Number of evaluation steps per evaluation cycle. If None, the
      number of evaluation steps is set from the `EvalConfig` proto.
    model_fn_creator: A function that creates a `model_fn` for `Estimator`.
      Follows the signature:

      * Args:
        * `detection_model_fn`: Function that returns `DetectionModel` instance.
        * `configs`: Dictionary of pipeline config objects.
        * `hparams`: `HParams` object.
      * Returns:
        `model_fn` for `Estimator`.

    **kwargs: Additional keyword arguments for configuration override.

  Returns:
    An `Experiment` that defines all aspects of training, evaluation, and
    export.
  """
  tf.logging.warning('Experiment is being deprecated. Please use '
                     'tf.estimator.train_and_evaluate(). See model_main.py for '
                     'an example.')
  train_and_eval_dict = create_estimator_and_inputs(
      run_config,
      hparams,
      pipeline_config_path,
      train_steps=train_steps,
      eval_steps=eval_steps,
      model_fn_creator=model_fn_creator,
      **kwargs)
  estimator = train_and_eval_dict['estimator']
  train_input_fn = train_and_eval_dict['train_input_fn']
  eval_input_fn = train_and_eval_dict['eval_input_fn']
  predict_input_fn = train_and_eval_dict['predict_input_fn']
  train_steps = train_and_eval_dict['train_steps']
  eval_steps = train_and_eval_dict['eval_steps']

  export_strategies = [
      tf.contrib.learn.utils.saved_model_export_utils.make_export_strategy(
          serving_input_fn=predict_input_fn)
  ]

  return tf.contrib.learn.Experiment(
      estimator=estimator,
      train_input_fn=train_input_fn,
      eval_input_fn=eval_input_fn,
      train_steps=train_steps,
      eval_steps=eval_steps,
      export_strategies=export_strategies,
      eval_delay_secs=120,)