resnet.py 14.1 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

15
"""Contains definitions of ResNet and ResNet-RS models."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
16
17
18
19

# Import libraries
import tensorflow as tf
from official.modeling import tf_utils
Yeqing Li's avatar
Yeqing Li committed
20
from official.vision.beta.modeling.backbones import factory
Abdullah Rashwan's avatar
Abdullah Rashwan committed
21
from official.vision.beta.modeling.layers import nn_blocks
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
22
from official.vision.beta.modeling.layers import nn_layers
Abdullah Rashwan's avatar
Abdullah Rashwan committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

layers = tf.keras.layers

# Specifications for different ResNet variants.
# Each entry specifies block configurations of the particular ResNet variant.
# Each element in the block configuration is in the following format:
# (block_fn, num_filters, block_repeats)
RESNET_SPECS = {
    18: [
        ('residual', 64, 2),
        ('residual', 128, 2),
        ('residual', 256, 2),
        ('residual', 512, 2),
    ],
    34: [
        ('residual', 64, 3),
        ('residual', 128, 4),
        ('residual', 256, 6),
        ('residual', 512, 3),
    ],
    50: [
        ('bottleneck', 64, 3),
        ('bottleneck', 128, 4),
        ('bottleneck', 256, 6),
        ('bottleneck', 512, 3),
    ],
    101: [
        ('bottleneck', 64, 3),
        ('bottleneck', 128, 4),
        ('bottleneck', 256, 23),
        ('bottleneck', 512, 3),
    ],
    152: [
        ('bottleneck', 64, 3),
        ('bottleneck', 128, 8),
        ('bottleneck', 256, 36),
        ('bottleneck', 512, 3),
    ],
    200: [
        ('bottleneck', 64, 3),
        ('bottleneck', 128, 24),
        ('bottleneck', 256, 36),
        ('bottleneck', 512, 3),
    ],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
67
    270: [
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
68
        ('bottleneck', 64, 4),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
69
70
        ('bottleneck', 128, 29),
        ('bottleneck', 256, 53),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
71
72
        ('bottleneck', 512, 4),
    ],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
73
74
75
76
77
78
    350: [
        ('bottleneck', 64, 4),
        ('bottleneck', 128, 36),
        ('bottleneck', 256, 72),
        ('bottleneck', 512, 4),
    ],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
79
80
81
82
83
84
    420: [
        ('bottleneck', 64, 4),
        ('bottleneck', 128, 44),
        ('bottleneck', 256, 87),
        ('bottleneck', 512, 4),
    ],
Abdullah Rashwan's avatar
Abdullah Rashwan committed
85
86
87
88
89
}


@tf.keras.utils.register_keras_serializable(package='Vision')
class ResNet(tf.keras.Model):
90
  """Creates ResNet and ResNet-RS family models.
Fan Yang's avatar
Fan Yang committed
91
92
93
94

  This implements the Deep Residual Network from:
    Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
    Deep Residual Learning for Image Recognition.
95
96
97
98
99
    (https://arxiv.org/pdf/1512.03385) and
    Irwan Bello, William Fedus, Xianzhi Du, Ekin D. Cubuk, Aravind Srinivas,
    Tsung-Yi Lin, Jonathon Shlens, Barret Zoph.
    Revisiting ResNets: Improved Training and Scaling Strategies.
    (https://arxiv.org/abs/2103.07579).
Fan Yang's avatar
Fan Yang committed
100
  """
Abdullah Rashwan's avatar
Abdullah Rashwan committed
101
102
103
104

  def __init__(self,
               model_id,
               input_specs=layers.InputSpec(shape=[None, None, None, 3]),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
105
               depth_multiplier=1.0,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
106
               stem_type='v0',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
107
108
               resnetd_shortcut=False,
               replace_stem_max_pool=False,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
109
               se_ratio=None,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
110
               init_stochastic_depth_rate=0.0,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
111
112
113
114
115
116
117
118
               activation='relu',
               use_sync_bn=False,
               norm_momentum=0.99,
               norm_epsilon=0.001,
               kernel_initializer='VarianceScaling',
               kernel_regularizer=None,
               bias_regularizer=None,
               **kwargs):
Fan Yang's avatar
Fan Yang committed
119
    """Initializes a ResNet model.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
120
121

    Args:
Fan Yang's avatar
Fan Yang committed
122
123
124
      model_id: An `int` of the depth of ResNet backbone model.
      input_specs: A `tf.keras.layers.InputSpec` of the input tensor.
      depth_multiplier: A `float` of the depth multiplier to uniformaly scale up
125
126
        all layers in channel size. This argument is also referred to as
        `width_multiplier` in (https://arxiv.org/abs/2103.07579).
Fan Yang's avatar
Fan Yang committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
      stem_type: A `str` of stem type of ResNet. Default to `v0`. If set to
        `v1`, use ResNet-D type stem (https://arxiv.org/abs/1812.01187).
      resnetd_shortcut: A `bool` of whether to use ResNet-D shortcut in
        downsampling blocks.
      replace_stem_max_pool: A `bool` of whether to replace the max pool in stem
        with a stride-2 conv,
      se_ratio: A `float` or None. Ratio of the Squeeze-and-Excitation layer.
      init_stochastic_depth_rate: A `float` of initial stochastic depth rate.
      activation: A `str` name of the activation function.
      use_sync_bn: If True, use synchronized batch normalization.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A small `float` added to variance to avoid dividing by zero.
      kernel_initializer: A str for kernel initializer of convolutional layers.
      kernel_regularizer: A `tf.keras.regularizers.Regularizer` object for
        Conv2D. Default to None.
      bias_regularizer: A `tf.keras.regularizers.Regularizer` object for Conv2D.
        Default to None.
      **kwargs: Additional keyword arguments to be passed.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
145
146
147
    """
    self._model_id = model_id
    self._input_specs = input_specs
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
148
    self._depth_multiplier = depth_multiplier
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
149
    self._stem_type = stem_type
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
150
151
    self._resnetd_shortcut = resnetd_shortcut
    self._replace_stem_max_pool = replace_stem_max_pool
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
152
    self._se_ratio = se_ratio
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
153
    self._init_stochastic_depth_rate = init_stochastic_depth_rate
Abdullah Rashwan's avatar
Abdullah Rashwan committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    self._use_sync_bn = use_sync_bn
    self._activation = activation
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
    if use_sync_bn:
      self._norm = layers.experimental.SyncBatchNormalization
    else:
      self._norm = layers.BatchNormalization
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer
    self._bias_regularizer = bias_regularizer

    if tf.keras.backend.image_data_format() == 'channels_last':
      bn_axis = -1
    else:
      bn_axis = 1

    # Build ResNet.
    inputs = tf.keras.Input(shape=input_specs.shape[1:])

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
174
175
    if stem_type == 'v0':
      x = layers.Conv2D(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
176
          filters=int(64 * self._depth_multiplier),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
          kernel_size=7,
          strides=2,
          use_bias=False,
          padding='same',
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer)(
              inputs)
      x = self._norm(
          axis=bn_axis, momentum=norm_momentum, epsilon=norm_epsilon)(
              x)
      x = tf_utils.get_activation(activation)(x)
    elif stem_type == 'v1':
      x = layers.Conv2D(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
191
          filters=int(32 * self._depth_multiplier),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
192
193
194
195
196
197
198
199
200
201
202
203
204
          kernel_size=3,
          strides=2,
          use_bias=False,
          padding='same',
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer)(
              inputs)
      x = self._norm(
          axis=bn_axis, momentum=norm_momentum, epsilon=norm_epsilon)(
              x)
      x = tf_utils.get_activation(activation)(x)
      x = layers.Conv2D(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
205
          filters=int(32 * self._depth_multiplier),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
206
207
208
209
210
211
212
213
214
215
216
217
218
          kernel_size=3,
          strides=1,
          use_bias=False,
          padding='same',
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer)(
              x)
      x = self._norm(
          axis=bn_axis, momentum=norm_momentum, epsilon=norm_epsilon)(
              x)
      x = tf_utils.get_activation(activation)(x)
      x = layers.Conv2D(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
219
          filters=int(64 * self._depth_multiplier),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
          kernel_size=3,
          strides=1,
          use_bias=False,
          padding='same',
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer)(
              x)
      x = self._norm(
          axis=bn_axis, momentum=norm_momentum, epsilon=norm_epsilon)(
              x)
      x = tf_utils.get_activation(activation)(x)
    else:
      raise ValueError('Stem type {} not supported.'.format(stem_type))

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    if replace_stem_max_pool:
      x = layers.Conv2D(
          filters=int(64 * self._depth_multiplier),
          kernel_size=3,
          strides=2,
          use_bias=False,
          padding='same',
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer)(
              x)
      x = self._norm(
          axis=bn_axis, momentum=norm_momentum, epsilon=norm_epsilon)(
              x)
      x = tf_utils.get_activation(activation)(x)
    else:
      x = layers.MaxPool2D(pool_size=3, strides=2, padding='same')(x)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
252
253
254
255
256
257
258
259
260
261
262

    endpoints = {}
    for i, spec in enumerate(RESNET_SPECS[model_id]):
      if spec[0] == 'residual':
        block_fn = nn_blocks.ResidualBlock
      elif spec[0] == 'bottleneck':
        block_fn = nn_blocks.BottleneckBlock
      else:
        raise ValueError('Block fn `{}` is not supported.'.format(spec[0]))
      x = self._block_group(
          inputs=x,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
263
          filters=int(spec[1] * self._depth_multiplier),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
264
265
266
          strides=(1 if i == 0 else 2),
          block_fn=block_fn,
          block_repeats=spec[2],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
267
268
          stochastic_depth_drop_rate=nn_layers.get_stochastic_depth_rate(
              self._init_stochastic_depth_rate, i + 2, 5),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
269
          name='block_group_l{}'.format(i + 2))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
270
      endpoints[str(i + 2)] = x
Abdullah Rashwan's avatar
Abdullah Rashwan committed
271
272
273
274
275
276
277
278
279
280
281

    self._output_specs = {l: endpoints[l].get_shape() for l in endpoints}

    super(ResNet, self).__init__(inputs=inputs, outputs=endpoints, **kwargs)

  def _block_group(self,
                   inputs,
                   filters,
                   strides,
                   block_fn,
                   block_repeats=1,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
282
                   stochastic_depth_drop_rate=0.0,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
283
284
285
286
                   name='block_group'):
    """Creates one group of blocks for the ResNet model.

    Args:
Fan Yang's avatar
Fan Yang committed
287
288
289
290
291
292
293
294
295
296
297
      inputs: A `tf.Tensor` of size `[batch, channels, height, width]`.
      filters: An `int` number of filters for the first convolution of the
        layer.
      strides: An `int` stride to use for the first convolution of the layer.
        If greater than 1, this layer will downsample the input.
      block_fn: The type of block group. Either `nn_blocks.ResidualBlock` or
        `nn_blocks.BottleneckBlock`.
      block_repeats: An `int` number of blocks contained in the layer.
      stochastic_depth_drop_rate: A `float` of drop rate of the current block
        group.
      name: A `str` name for the block.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
298
299

    Returns:
Fan Yang's avatar
Fan Yang committed
300
      The output `tf.Tensor` of the block layer.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
301
302
303
304
305
    """
    x = block_fn(
        filters=filters,
        strides=strides,
        use_projection=True,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
306
        stochastic_depth_drop_rate=stochastic_depth_drop_rate,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
307
        se_ratio=self._se_ratio,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
308
        resnetd_shortcut=self._resnetd_shortcut,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
309
310
311
312
313
314
315
316
317
318
319
320
321
322
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activation=self._activation,
        use_sync_bn=self._use_sync_bn,
        norm_momentum=self._norm_momentum,
        norm_epsilon=self._norm_epsilon)(
            inputs)

    for _ in range(1, block_repeats):
      x = block_fn(
          filters=filters,
          strides=1,
          use_projection=False,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
323
          stochastic_depth_drop_rate=stochastic_depth_drop_rate,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
324
          se_ratio=self._se_ratio,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
325
          resnetd_shortcut=self._resnetd_shortcut,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer,
          activation=self._activation,
          use_sync_bn=self._use_sync_bn,
          norm_momentum=self._norm_momentum,
          norm_epsilon=self._norm_epsilon)(
              x)

    return tf.identity(x, name=name)

  def get_config(self):
    config_dict = {
        'model_id': self._model_id,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
340
        'depth_multiplier': self._depth_multiplier,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
341
        'stem_type': self._stem_type,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
342
343
        'resnetd_shortcut': self._resnetd_shortcut,
        'replace_stem_max_pool': self._replace_stem_max_pool,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
344
        'activation': self._activation,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
345
        'se_ratio': self._se_ratio,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
346
        'init_stochastic_depth_rate': self._init_stochastic_depth_rate,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
        'use_sync_bn': self._use_sync_bn,
        'norm_momentum': self._norm_momentum,
        'norm_epsilon': self._norm_epsilon,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'bias_regularizer': self._bias_regularizer,
    }
    return config_dict

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)

  @property
  def output_specs(self):
    """A dict of {level: TensorShape} pairs for the model output."""
    return self._output_specs
Yeqing Li's avatar
Yeqing Li committed
364
365
366
367
368
369
370


@factory.register_backbone_builder('resnet')
def build_resnet(
    input_specs: tf.keras.layers.InputSpec,
    model_config,
    l2_regularizer: tf.keras.regularizers.Regularizer = None) -> tf.keras.Model:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
371
  """Builds ResNet backbone from a config."""
Yeqing Li's avatar
Yeqing Li committed
372
373
374
375
376
377
378
379
380
  backbone_type = model_config.backbone.type
  backbone_cfg = model_config.backbone.get()
  norm_activation_config = model_config.norm_activation
  assert backbone_type == 'resnet', (f'Inconsistent backbone type '
                                     f'{backbone_type}')

  return ResNet(
      model_id=backbone_cfg.model_id,
      input_specs=input_specs,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
381
      depth_multiplier=backbone_cfg.depth_multiplier,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
382
      stem_type=backbone_cfg.stem_type,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
383
384
      resnetd_shortcut=backbone_cfg.resnetd_shortcut,
      replace_stem_max_pool=backbone_cfg.replace_stem_max_pool,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
385
      se_ratio=backbone_cfg.se_ratio,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
386
      init_stochastic_depth_rate=backbone_cfg.stochastic_depth_drop_rate,
Yeqing Li's avatar
Yeqing Li committed
387
388
389
390
391
      activation=norm_activation_config.activation,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon,
      kernel_regularizer=l2_regularizer)