README.md 8.31 KB
Newer Older
1
# Object Detection Models on TensorFlow 2
2

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
3
4
**Note**: This repository is still under construction.
More features and instructions will be added soon.
5
6

## Prerequsite
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
7
To get started, download the code from TensorFlow models GitHub repository or
8
use the pre-installed Google Cloud VM.
9
10

```bash
11
git clone https://github.com/tensorflow/models.git
12
13
```

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
14
Next, make sure to use TensorFlow 2.1+ on Google Cloud. Also here are
15
a few package you need to install to get started:
16
17

```bash
18
19
sudo apt-get install -y python-tk && \
pip3 install -r ~/models/official/requirements.txt
20
21
22
```

## Train RetinaNet on TPU
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
23

24
25
26
27
28
29
30
31
32
### Train a vanilla ResNet-50 based RetinaNet.

```bash
TPU_NAME="<your GCP TPU name>"
MODEL_DIR="<path to the directory to store model files>"
RESNET_CHECKPOINT="<path to the pre-trained Resnet-50 checkpoint>"
TRAIN_FILE_PATTERN="<path to the TFRecord training data>"
EVAL_FILE_PATTERN="<path to the TFRecord validation data>"
VAL_JSON_FILE="<path to the validation annotation JSON file>"
33
python3 ~/models/official/vision/detection/main.py \
34
35
36
37
38
39
40
  --strategy_type=tpu \
  --tpu="${TPU_NAME?}" \
  --model_dir="${MODEL_DIR?}" \
  --mode=train \
  --params_override="{ type: retinanet, train: { checkpoint: { path: ${RESNET_CHECKPOINT?}, prefix: resnet50/ }, train_file_pattern: ${TRAIN_FILE_PATTERN?} }, eval: { val_json_file: ${VAL_JSON_FILE?}, eval_file_pattern: ${EVAL_FILE_PATTERN?} } }"
```

Pengchong Jin's avatar
Pengchong Jin committed
41
42
43
44
45
46
47
48
49
The pre-trained ResNet-50 checkpoint can be downloaded [here](https://storage.cloud.google.com/cloud-tpu-checkpoints/model-garden-vision/detection/resnet50-2018-02-07.tar.gz).

Note: The ResNet implementation under
[detection/](https://github.com/tensorflow/models/tree/master/official/vision/detection)
is currently different from the one under
[classification/](https://github.com/tensorflow/models/tree/master/official/vision/image_classification),
so the checkpoints are not compatible.
We will unify the implementation soon.

50
51


52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
### Train a custom RetinaNet using the config file.

First, create a YAML config file, e.g. *my_retinanet.yaml*. This file specifies
the parameters to be overridden, which should at least include the following
fields.

```YAML
# my_retinanet.yaml
type: 'retinanet'
train:
  train_file_pattern: <path to the TFRecord training data>
eval:
  eval_file_pattern: <path to the TFRecord validation data>
  val_json_file: <path to the validation annotation JSON file>
```

Once the YAML config file is created, you can launch the training using the
following command.

```bash
TPU_NAME="<your GCP TPU name>"
MODEL_DIR="<path to the directory to store model files>"
74
python3 ~/models/official/vision/detection/main.py \
75
76
77
78
79
80
81
82
83
  --strategy_type=tpu \
  --tpu="${TPU_NAME?}" \
  --model_dir="${MODEL_DIR?}" \
  --mode=train \
  --config_file="my_retinanet.yaml"
```

## Train RetinaNet on GPU

Yeqing Li's avatar
Yeqing Li committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
Training on GPU is similar to that on TPU. The major change is the strategy
type (use "[mirrored](https://www.tensorflow.org/api_docs/python/tf/distribute/MirroredStrategy)" for multiple GPU and
"[one_device](https://www.tensorflow.org/api_docs/python/tf/distribute/OneDeviceStrategy)" for single GPU).

Multi-GPUs example (assuming there are 8GPU connected to the host):

```bash
MODEL_DIR="<path to the directory to store model files>"
python3 ~/models/official/vision/detection/main.py \
  --strategy_type=mirrored \
  --num_gpus=8 \
  --model_dir="${MODEL_DIR?}" \
  --mode=train \
  --config_file="my_retinanet.yaml"
```

```bash
MODEL_DIR="<path to the directory to store model files>"
python3 ~/models/official/vision/detection/main.py \
  --strategy_type=one_device \
  --num_gpus=1 \
  --model_dir="${MODEL_DIR?}" \
  --mode=train \
  --config_file="my_retinanet.yaml"
```

An example with inline configuration (YAML or JSON format):

```
python3 ~/models/official/vision/detection/main.py \
  --model_dir=<model folder> \
  --strategy_type=one_device \
  --num_gpus=1 \
  --mode=train \
  --params_override="eval:
 eval_file_pattern: <Eval TFRecord file pattern>
 batch_size: 8
 val_json_file: <COCO format groundtruth JSON file>
predict:
 predict_batch_size: 8
architecture:
 use_bfloat16: False
retinanet_parser:
127
 use_bfloat16: False
Yeqing Li's avatar
Yeqing Li committed
128
129
130
131
132
133
134
135
train:
 total_steps: 1
 batch_size: 8
 train_file_pattern: <Eval TFRecord file pattern>
use_tpu: False
"
```

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
136
137
138
139
140
---

## Train Mask R-CNN on TPU

### Train a vanilla ResNet-50 based Mask R-CNN.
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

```bash
TPU_NAME="<your GCP TPU name>"
MODEL_DIR="<path to the directory to store model files>"
RESNET_CHECKPOINT="<path to the pre-trained Resnet-50 checkpoint>"
TRAIN_FILE_PATTERN="<path to the TFRecord training data>"
EVAL_FILE_PATTERN="<path to the TFRecord validation data>"
VAL_JSON_FILE="<path to the validation annotation JSON file>"
python3 ~/models/official/vision/detection/main.py \
  --strategy_type=tpu \
  --tpu=${TPU_NAME} \
  --model_dir=${MODEL_DIR} \
  --mode=train \
  --model=mask_rcnn \
  --params_override="{train: { checkpoint: { path: ${RESNET_CHECKPOINT}, prefix: resnet50/ }, train_file_pattern: ${TRAIN_FILE_PATTERN} }, eval: { val_json_file: ${VAL_JSON_FILE}, eval_file_pattern: ${EVAL_FILE_PATTERN} } }"
```

Pengchong Jin's avatar
Pengchong Jin committed
158
159
160
161
162
163
164
165
The pre-trained ResNet-50 checkpoint can be downloaded [here](https://storage.cloud.google.com/cloud-tpu-checkpoints/model-garden-vision/detection/resnet50-2018-02-07.tar.gz).

Note: The ResNet implementation under
[detection/](https://github.com/tensorflow/models/tree/master/official/vision/detection)
is currently different from the one under
[classification/](https://github.com/tensorflow/models/tree/master/official/vision/image_classification),
so the checkpoints are not compatible.
We will unify the implementation soon.
Pengchong Jin's avatar
Pengchong Jin committed
166
167


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
168
### Train a custom Mask R-CNN using the config file.
169

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
170
171
172
First, create a YAML config file, e.g. *my_maskrcnn.yaml*.
This file specifies the parameters to be overridden,
which should at least include the following fields.
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

```YAML
# my_maskrcnn.yaml
train:
  train_file_pattern: <path to the TFRecord training data>
eval:
  eval_file_pattern: <path to the TFRecord validation data>
  val_json_file: <path to the validation annotation JSON file>
```

Once the YAML config file is created, you can launch the training using the
following command.

```bash
TPU_NAME="<your GCP TPU name>"
MODEL_DIR="<path to the directory to store model files>"
python3 ~/models/official/vision/detection/main.py \
  --strategy_type=tpu \
  --tpu=${TPU_NAME} \
  --model_dir=${MODEL_DIR} \
  --mode=train \
  --model=mask_rcnn \
  --config_file="my_maskrcnn.yaml"
```

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
198
## Train Mask R-CNN on GPU
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

Training on GPU is similar to that on TPU. The major change is the strategy type
(use
"[mirrored](https://www.tensorflow.org/api_docs/python/tf/distribute/MirroredStrategy)"
for multiple GPU and
"[one_device](https://www.tensorflow.org/api_docs/python/tf/distribute/OneDeviceStrategy)"
for single GPU).

Multi-GPUs example (assuming there are 8GPU connected to the host):

```bash
MODEL_DIR="<path to the directory to store model files>"
python3 ~/models/official/vision/detection/main.py \
  --strategy_type=mirrored \
  --num_gpus=8 \
  --model_dir=${MODEL_DIR} \
  --mode=train \
  --model=mask_rcnn \
  --config_file="my_maskrcnn.yaml"
```

```bash
MODEL_DIR="<path to the directory to store model files>"
python3 ~/models/official/vision/detection/main.py \
  --strategy_type=one_device \
  --num_gpus=1 \
  --model_dir=${MODEL_DIR} \
  --mode=train \
  --model=mask_rcnn \
  --config_file="my_maskrcnn.yaml"
```

An example with inline configuration (YAML or JSON format):

```
python3 ~/models/official/vision/detection/main.py \
  --model_dir=<model folder> \
  --strategy_type=one_device \
  --num_gpus=1 \
  --mode=train \
  --model=mask_rcnn \
  --params_override="eval:
 eval_file_pattern: <Eval TFRecord file pattern>
 batch_size: 8
 val_json_file: <COCO format groundtruth JSON file>
predict:
 predict_batch_size: 8
architecture:
 use_bfloat16: False
maskrcnn_parser:
249
 use_bfloat16: False
250
251
252
253
254
255
256
257
train:
 total_steps: 1000
 batch_size: 8
 train_file_pattern: <Eval TFRecord file pattern>
use_tpu: False
"
```

Yeqing Li's avatar
Yeqing Li committed
258
259
Note: The JSON groundtruth file is useful for [COCO dataset](http://cocodataset.org/#home) and can be
downloaded from the [COCO website](http://cocodataset.org/#download). For custom dataset, it is unncessary because the groundtruth can be included in the TFRecord files.
Yeqing Li's avatar
Yeqing Li committed
260
261
262
263
264
265

## References

1.  [Focal Loss for Dense Object Detection](https://arxiv.org/abs/1708.02002).
    Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. IEEE
    International Conference on Computer Vision (ICCV), 2017.