controller_test.py 20.7 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
# Lint as: python3
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# Copyright 2020 The Orbit Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for orbit.controller."""

import os
from absl import logging
from absl.testing import parameterized
import numpy as np
from orbit import controller
from orbit import standard_runner

import tensorflow as tf


def create_model():
  x = tf.keras.layers.Input(shape=(3,), name="input")
  y = tf.keras.layers.Dense(4, name="dense")(x)
  model = tf.keras.Model(x, y)
  return model


def summaries_with_matching_keyword(keyword, summary_dir):
Ruoxin Sang's avatar
Ruoxin Sang committed
36
37
  """Returns summary protos matching given keyword from event file."""
  matches = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
38
39
40
41
42
  event_paths = tf.io.gfile.glob(os.path.join(summary_dir, "events*"))
  for event in tf.compat.v1.train.summary_iterator(event_paths[-1]):
    if event.summary is not None:
      for value in event.summary.value:
        if keyword in value.tag:
Ruoxin Sang's avatar
Ruoxin Sang committed
43
44
          matches.append(event.summary)
  return matches
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198


def dataset_fn(ctx):
  del ctx
  inputs = np.zeros((10, 3), dtype=np.float32)
  targets = np.ones((10, 4), dtype=np.float32)
  dataset = tf.data.Dataset.from_tensor_slices((inputs, targets))
  dataset = dataset.repeat(100)
  dataset = dataset.batch(10, drop_remainder=True)
  return dataset


class TestRunner(standard_runner.StandardTrainer,
                 standard_runner.StandardEvaluator):
  """Implements the training and evaluation APIs for the test model."""

  def __init__(self, return_numpy=False):
    self.strategy = tf.distribute.get_strategy()
    self.model = create_model()
    self.optimizer = tf.keras.optimizers.RMSprop(learning_rate=0.1)
    self.global_step = self.optimizer.iterations
    self.train_loss = tf.keras.metrics.Mean("train_loss", dtype=tf.float32)
    self.eval_loss = tf.keras.metrics.Mean("eval_loss", dtype=tf.float32)
    self.return_numpy = return_numpy
    train_dataset = (
        self.strategy.experimental_distribute_datasets_from_function(dataset_fn)
    )
    eval_dataset = (
        self.strategy.experimental_distribute_datasets_from_function(dataset_fn)
    )
    standard_runner.StandardTrainer.__init__(self, train_dataset)
    standard_runner.StandardEvaluator.__init__(self, eval_dataset)

  def train_step(self, iterator):

    def _replicated_step(inputs):
      """Replicated training step."""
      inputs, targets = inputs
      with tf.GradientTape() as tape:
        outputs = self.model(inputs)
        loss = tf.reduce_mean(tf.keras.losses.MSE(targets, outputs))
      grads = tape.gradient(loss, self.model.variables)
      self.optimizer.apply_gradients(zip(grads, self.model.variables))
      self.train_loss.update_state(loss)

    self.strategy.run(_replicated_step, args=(next(iterator),))

  def train_loop_end(self):
    train_loss = self.train_loss.result()
    return {
        "loss": train_loss.numpy() if self.return_numpy else train_loss,
    }

  def build_eval_dataset(self):
    return self.strategy.experimental_distribute_datasets_from_function(
        dataset_fn)

  def eval_begin(self):
    self.eval_loss.reset_states()

  def eval_step(self, iterator):

    def _replicated_step(inputs):
      """Replicated evaluation step."""
      inputs, targets = inputs
      outputs = self.model(inputs)
      loss = tf.reduce_mean(tf.keras.losses.MSE(targets, outputs))
      self.eval_loss.update_state(loss)

    self.strategy.run(_replicated_step, args=(next(iterator),))

  def eval_end(self):
    eval_loss = self.eval_loss.result()
    return {
        "eval_loss": eval_loss.numpy() if self.return_numpy else eval_loss,
    }


class TestEvaluator(standard_runner.StandardEvaluator):
  """Implements the training and evaluation APIs for the test model."""

  def __init__(self):
    self.strategy = tf.distribute.get_strategy()
    self.model = create_model()
    eval_dataset = self.strategy.experimental_distribute_datasets_from_function(
        dataset_fn)
    standard_runner.StandardEvaluator.__init__(self, eval_dataset)

  def eval_reduce(self, state, output):
    state.append(output)
    return state

  def eval_begin(self):
    return []

  def eval_step(self, iterator):

    def _replicated_step(inputs):
      """Replicated evaluation step."""
      inputs, targets = inputs
      outputs = self.model(inputs)
      loss = tf.reduce_mean(tf.keras.losses.MSE(targets, outputs))
      return loss

    per_replica_losses = self.strategy.run(
        _replicated_step, args=(next(iterator),))
    mean_loss = self.strategy.reduce(
        tf.distribute.ReduceOp.MEAN, per_replica_losses, axis=None)
    return mean_loss

  def eval_end(self, outputs):
    return {
        "eval_loss": tf.reduce_mean(outputs),
    }


class TestTrainerWithSummaries(standard_runner.StandardTrainer):
  """A Trainer model with summaries for testing purposes."""

  def __init__(self):
    self.strategy = tf.distribute.get_strategy()
    self.model = create_model()
    self.optimizer = tf.keras.optimizers.RMSprop(learning_rate=0.1)
    self.global_step = self.optimizer.iterations
    self.train_loss = tf.keras.metrics.Mean("train_loss", dtype=tf.float32)
    train_dataset = (
        self.strategy.experimental_distribute_datasets_from_function(dataset_fn)
    )
    standard_runner.StandardTrainer.__init__(
        self, train_dataset, use_tpu_summary_optimization=True)

  def build_train_dataset(self):
    return self.strategy.experimental_distribute_datasets_from_function(
        dataset_fn)

  def train_step(self, iterator):

    def _replicated_step(inputs):
      """Replicated training step."""
      inputs, targets = inputs
      with tf.GradientTape() as tape:
        outputs = self.model(inputs)
        loss = tf.reduce_mean(tf.keras.losses.MSE(targets, outputs))
      tf.summary.scalar("loss", loss)
      grads = tape.gradient(loss, self.model.variables)
      self.optimizer.apply_gradients(zip(grads, self.model.variables))
      self.train_loss.update_state(loss)

    self.strategy.run(_replicated_step, args=(next(iterator),))


class ControllerTest(tf.test.TestCase, parameterized.TestCase):

  def setUp(self):
Hongkun Yu's avatar
Hongkun Yu committed
199
    super().setUp()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    self.model_dir = self.get_temp_dir()

  def test_no_checkpoint(self):
    test_runner = TestRunner()
    # No checkpoint manager and no strategy.
    test_controller = controller.Controller(
        trainer=test_runner,
        evaluator=test_runner,
        global_step=test_runner.global_step,
        steps_per_loop=2,
        summary_dir=os.path.join(self.model_dir, "summaries/train"),
        eval_summary_dir=os.path.join(self.model_dir, "summaries/eval"))
    test_controller.train_and_evaluate(
        train_steps=10, eval_steps=2, eval_interval=6)
    self.assertEqual(test_runner.global_step, 10)
    # Loss and accuracy values should be written into summaries.
    self.assertNotEmpty(
        tf.io.gfile.listdir(os.path.join(self.model_dir, "summaries/train")))
Ruoxin Sang's avatar
Ruoxin Sang committed
218
219
    self.assertNotEmpty(
        summaries_with_matching_keyword(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
220
221
222
            "loss", os.path.join(self.model_dir, "summaries/train")))
    self.assertNotEmpty(
        tf.io.gfile.listdir(os.path.join(self.model_dir, "summaries/eval")))
Ruoxin Sang's avatar
Ruoxin Sang committed
223
224
    self.assertNotEmpty(
        summaries_with_matching_keyword(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
            "eval_loss", os.path.join(self.model_dir, "summaries/eval")))
    # No checkpoint, so global step starts from 0.
    test_runner.global_step.assign(0)
    test_controller.train_and_evaluate(
        train_steps=10, eval_steps=2, eval_interval=6)
    self.assertEqual(test_runner.global_step, 10)

  def test_no_checkpoint_and_summaries(self):
    test_runner = TestRunner()
    # No checkpoint + summary directories.
    test_controller = controller.Controller(
        trainer=test_runner,
        evaluator=test_runner,
        global_step=test_runner.global_step,
        steps_per_loop=2)
    test_controller.train_and_evaluate(
        train_steps=10, eval_steps=2, eval_interval=6)
    self.assertEqual(test_runner.global_step, 10)

  @parameterized.named_parameters(("return_numpy", True),
                                  ("return_tensor", False))
  def test_train_and_evaluate(self, return_numpy):
    test_runner = TestRunner(return_numpy=return_numpy)

    checkpoint = tf.train.Checkpoint(
        model=test_runner.model, optimizer=test_runner.optimizer)
    checkpoint_manager = tf.train.CheckpointManager(
        checkpoint,
        self.model_dir,
        max_to_keep=None,
        step_counter=test_runner.global_step,
        checkpoint_interval=10)
    test_controller = controller.Controller(
        trainer=test_runner,
        evaluator=test_runner,
        global_step=test_runner.global_step,
        steps_per_loop=2,
        summary_dir=os.path.join(self.model_dir, "summaries/train"),
        checkpoint_manager=checkpoint_manager,
        eval_summary_dir=os.path.join(self.model_dir, "summaries/eval"))
    test_controller.train_and_evaluate(
        train_steps=10, eval_steps=2, eval_interval=6)

    # Checkpoints are saved.
    self.assertNotEmpty(tf.io.gfile.glob(os.path.join(self.model_dir, "ckpt*")))

    # Loss and accuracy values should be written into summaries.
    self.assertNotEmpty(
        tf.io.gfile.listdir(os.path.join(self.model_dir, "summaries/train")))
Ruoxin Sang's avatar
Ruoxin Sang committed
274
275
    self.assertNotEmpty(
        summaries_with_matching_keyword(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
276
277
278
            "loss", os.path.join(self.model_dir, "summaries/train")))
    self.assertNotEmpty(
        tf.io.gfile.listdir(os.path.join(self.model_dir, "summaries/eval")))
Ruoxin Sang's avatar
Ruoxin Sang committed
279
280
    self.assertNotEmpty(
        summaries_with_matching_keyword(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
            "eval_loss", os.path.join(self.model_dir, "summaries/eval")))

  def test_train_only(self):
    test_runner = TestRunner()

    checkpoint = tf.train.Checkpoint(
        model=test_runner.model, optimizer=test_runner.optimizer)
    checkpoint_manager = tf.train.CheckpointManager(
        checkpoint,
        self.model_dir,
        max_to_keep=None,
        step_counter=test_runner.global_step,
        checkpoint_interval=10)
    test_controller = controller.Controller(
        trainer=test_runner,
        global_step=test_runner.global_step,
        steps_per_loop=2,
        summary_dir=os.path.join(self.model_dir, "summaries/train"),
        checkpoint_manager=checkpoint_manager,
        eval_summary_dir=os.path.join(self.model_dir, "summaries/eval"),
    )
    test_controller.train(steps=10)

    # Checkpoints are saved.
    self.assertNotEmpty(tf.io.gfile.glob(os.path.join(self.model_dir, "ckpt*")))

    # Only train summaries are written.
    self.assertNotEmpty(
        tf.io.gfile.listdir(os.path.join(self.model_dir, "summaries/train")))
Ruoxin Sang's avatar
Ruoxin Sang committed
310
311
    self.assertNotEmpty(
        summaries_with_matching_keyword(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
            "loss", os.path.join(self.model_dir, "summaries/train")))
    self.assertFalse(
        tf.io.gfile.exists(os.path.join(self.model_dir, "summaries/eval")))

  def test_evaluate_only(self):
    test_runner = TestRunner()

    checkpoint = tf.train.Checkpoint(model=test_runner.model)
    checkpoint.save(os.path.join(self.model_dir, "ckpt"))
    checkpoint_manager = tf.train.CheckpointManager(
        checkpoint,
        self.model_dir,
        max_to_keep=None,
        step_counter=test_runner.global_step)
    test_controller = controller.Controller(
        evaluator=test_runner,
        global_step=test_runner.global_step,
        checkpoint_manager=checkpoint_manager,
        summary_dir=os.path.join(self.model_dir, "summaries/train"),
        eval_summary_dir=os.path.join(self.model_dir, "summaries/eval"))
Simon Kornblith's avatar
Simon Kornblith committed
332
    eval_results = test_controller.evaluate(steps=2)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
333
334
335
336
337
338

    # Only eval summaries are written
    self.assertFalse(
        tf.io.gfile.exists(os.path.join(self.model_dir, "summaries/train")))
    self.assertNotEmpty(
        tf.io.gfile.listdir(os.path.join(self.model_dir, "summaries/eval")))
Ruoxin Sang's avatar
Ruoxin Sang committed
339
340
    self.assertNotEmpty(
        summaries_with_matching_keyword(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
341
            "eval_loss", os.path.join(self.model_dir, "summaries/eval")))
Simon Kornblith's avatar
Simon Kornblith committed
342
    self.assertIn("eval_loss", eval_results)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

    # Tests continuous eval with timeout and timeout_fn.
    done_file = os.path.join(self.model_dir, "summaries/eval/Done")

    def timeout_fn():
      with tf.io.gfile.GFile(done_file, "w") as f:
        f.write("DONE")
        return True

    test_controller = controller.Controller(
        evaluator=test_runner,
        global_step=test_runner.global_step,
        checkpoint_manager=checkpoint_manager,
        eval_summary_dir=os.path.join(self.model_dir, "summaries/eval"))
    test_controller.evaluate_continuously(
        timeout=1, timeout_fn=timeout_fn, steps=2)
    self.assertNotEmpty(tf.io.gfile.glob(done_file))

  def test_no_eval_steps(self):
    test_runner = TestRunner()

    checkpoint = tf.train.Checkpoint(model=test_runner.model)
    checkpoint.save(os.path.join(self.model_dir, "ckpt"))
    checkpoint_manager = tf.train.CheckpointManager(
        checkpoint,
        self.model_dir,
        max_to_keep=None,
        step_counter=test_runner.global_step)
    test_controller = controller.Controller(
        evaluator=test_runner,
        global_step=test_runner.global_step,
        checkpoint_manager=checkpoint_manager)
    test_controller.evaluate()

  def test_already_trained_model(self):
    test_runner = TestRunner()
    test_runner.global_step.assign(10)

    checkpoint = tf.train.Checkpoint(
        model=test_runner.model, optimizer=test_runner.optimizer)
    checkpoint_manager = tf.train.CheckpointManager(
        checkpoint,
        self.model_dir,
        max_to_keep=None,
        step_counter=test_runner.global_step,
        checkpoint_interval=10)
    test_controller = controller.Controller(
        trainer=test_runner,
        global_step=test_runner.global_step,
        steps_per_loop=2,
        checkpoint_manager=checkpoint_manager)
    # `global_step` is already `train_steps`.
    test_controller.train(steps=10)

  def test_summaries_inside_train_fn(self):
    test_runner = TestTrainerWithSummaries()

    checkpoint = tf.train.Checkpoint(
        model=test_runner.model, optimizer=test_runner.optimizer)
    checkpoint_manager = tf.train.CheckpointManager(
        checkpoint,
        self.model_dir,
        max_to_keep=None,
        step_counter=test_runner.global_step)
    test_controller = controller.Controller(
        trainer=test_runner,
        global_step=test_runner.global_step,
        steps_per_loop=2,
        summary_dir=os.path.join(self.model_dir, "summaries/train"),
        summary_interval=2,
        checkpoint_manager=checkpoint_manager,
    )
    test_controller.train(steps=10)

    # Checkpoints are saved.
    self.assertEmpty(tf.io.gfile.glob(os.path.join(self.model_dir, "ckpt*")))

    # Only train summaries are written.
    self.assertNotEmpty(
        tf.io.gfile.listdir(os.path.join(self.model_dir, "summaries/train")))
Ruoxin Sang's avatar
Ruoxin Sang committed
423
424
    self.assertNotEmpty(
        summaries_with_matching_keyword(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
            "loss", os.path.join(self.model_dir, "summaries/train")))
    self.assertFalse(
        tf.io.gfile.exists(os.path.join(self.model_dir, "summaries/eval")))

  def test_train_and_evaluate_with_same_summary_dir(self):
    test_runner = TestRunner()

    checkpoint = tf.train.Checkpoint(
        model=test_runner.model, optimizer=test_runner.optimizer)
    checkpoint_manager = tf.train.CheckpointManager(
        checkpoint,
        self.model_dir,
        max_to_keep=None,
        step_counter=test_runner.global_step)
    test_controller = controller.Controller(
        trainer=test_runner,
        evaluator=test_runner,
        global_step=test_runner.global_step,
        steps_per_loop=2,
        summary_dir=os.path.join(self.model_dir, "summaries"),
        checkpoint_manager=checkpoint_manager,
        eval_summary_dir=os.path.join(self.model_dir, "summaries"))
    test_controller.train_and_evaluate(
        train_steps=10, eval_steps=2, eval_interval=6)

    # Loss and accuracy values should be written into summaries.
    self.assertNotEmpty(
        tf.io.gfile.listdir(os.path.join(self.model_dir, "summaries")))
Ruoxin Sang's avatar
Ruoxin Sang committed
453
454
455
456
457
458
    self.assertNotEmpty(
        summaries_with_matching_keyword(
            "loss", os.path.join(self.model_dir, "summaries")))
    self.assertNotEmpty(
        summaries_with_matching_keyword(
            "eval_loss", os.path.join(self.model_dir, "summaries")))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

  def test_early_stop_on_eval_loss(self):
    test_runner = TestRunner()

    class EarlyStopController(controller.Controller):
      """A subclass of Controller supports early stopping."""

      def train_and_evaluate(self,
                             train_steps: int = None,
                             eval_steps: int = None,
                             eval_interval: int = None):
        while self.global_step.numpy() < train_steps:
          interval = min(train_steps - self.global_step.numpy(), eval_interval)
          num_steps = self.global_step.numpy() + interval
          self.train(steps=num_steps, checkpoint_at_completion=False)
          self.evaluate(steps=eval_steps)
          # Early stop condition.
          if test_runner.eval_loss.result() < 0.1:
            logging.info(
                "Training early stopped as eval_loss %s is less than 0.1",
                test_runner.eval_loss.result())
            return

    checkpoint = tf.train.Checkpoint(
        model=test_runner.model, optimizer=test_runner.optimizer)
    checkpoint_manager = tf.train.CheckpointManager(
        checkpoint,
        self.model_dir,
        max_to_keep=None,
        step_counter=test_runner.global_step,
        checkpoint_interval=10)
    test_controller = EarlyStopController(
        trainer=test_runner,
        evaluator=test_runner,
        global_step=test_runner.global_step,
        steps_per_loop=2,
        checkpoint_manager=checkpoint_manager)
    test_controller.train_and_evaluate(
        train_steps=10, eval_steps=6, eval_interval=2)

    self.assertLess(test_runner.global_step, 10)

  def test_evaluate_with_loss_outputs(self):
    test_evaluator = TestEvaluator()

    checkpoint = tf.train.Checkpoint(model=test_evaluator.model)
    checkpoint.save(os.path.join(self.model_dir, "ckpt"))
    checkpoint_manager = tf.train.CheckpointManager(
        checkpoint, self.model_dir, max_to_keep=None)
    test_controller = controller.Controller(
        evaluator=test_evaluator,
        global_step=tf.Variable(0, dtype=tf.int64),
        checkpoint_manager=checkpoint_manager,
        eval_summary_dir=os.path.join(self.model_dir, "summaries/eval"))
    test_controller.evaluate(steps=5)

    # Only eval summaries are written
    self.assertNotEmpty(
        tf.io.gfile.listdir(os.path.join(self.model_dir, "summaries/eval")))
Ruoxin Sang's avatar
Ruoxin Sang committed
518
519
    self.assertNotEmpty(
        summaries_with_matching_keyword(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
            "eval_loss", os.path.join(self.model_dir, "summaries/eval")))

  def test_train_and_evaluate_reset_datasets(self):
    test_runner = TestRunner()

    test_controller = controller.Controller(
        trainer=test_runner,
        evaluator=test_runner,
        global_step=test_runner.global_step,
        steps_per_loop=2)

    test_controller.train_and_evaluate(
        train_steps=10, eval_steps=2, eval_interval=6)

    train_dataset = (
        test_runner.strategy.experimental_distribute_datasets_from_function(
            dataset_fn))
    eval_dataset = (
        test_runner.strategy.experimental_distribute_datasets_from_function(
            dataset_fn))
    test_runner.train_dataset = train_dataset
    test_runner.eval_dataset = eval_dataset

    test_controller.train_and_evaluate(
        train_steps=10, eval_steps=2, eval_interval=6)

Ruoxin Sang's avatar
Ruoxin Sang committed
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
  def test_eval_and_checkpoint_interval(self):
    test_runner = TestRunner()

    checkpoint = tf.train.Checkpoint(
        model=test_runner.model, optimizer=test_runner.optimizer)
    checkpoint_manager = tf.train.CheckpointManager(
        checkpoint,
        self.model_dir,
        max_to_keep=None,
        step_counter=test_runner.global_step,
        checkpoint_interval=5)
    test_controller = controller.Controller(
        trainer=test_runner,
        evaluator=test_runner,
        global_step=test_runner.global_step,
        steps_per_loop=10,
        checkpoint_manager=checkpoint_manager)
    test_controller.train_and_evaluate(
        train_steps=10, eval_steps=2, eval_interval=5)

    # Expect 3 checkpoints to be saved at step: 0, 5, 10.
    self.assertLen(
        tf.io.gfile.glob(os.path.join(self.model_dir, "ckpt-*.data*")), 3)
    # Expect evaluation is performed 2 times at step: 5, 10.
    self.assertLen(
        summaries_with_matching_keyword("eval_loss", self.model_dir), 2)


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
574
575
if __name__ == "__main__":
  tf.test.main()