inference.py 2.35 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2019 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Inference demo for YAMNet."""
from __future__ import division, print_function

import sys

import numpy as np
import resampy
import soundfile as sf
24
import tensorflow as tf
25
26
27
28
29
30
31
32

import params
import yamnet as yamnet_model


def main(argv):
  assert argv

33
34
35
36
  graph = tf.Graph()
  with graph.as_default():
    yamnet = yamnet_model.yamnet_frames_model(params)
    yamnet.load_weights('yamnet.h5')
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
  yamnet_classes = yamnet_model.class_names('yamnet_class_map.csv')

  for file_name in argv:
    # Decode the WAV file.
    wav_data, sr = sf.read(file_name, dtype=np.int16)
    assert wav_data.dtype == np.int16, 'Bad sample type: %r' % wav_data.dtype
    waveform = wav_data / 32768.0  # Convert to [-1.0, +1.0]

    # Convert to mono and the sample rate expected by YAMNet.
    if len(waveform.shape) > 1:
      waveform = np.mean(waveform, axis=1)
    if sr != params.SAMPLE_RATE:
      waveform = resampy.resample(waveform, sr, params.SAMPLE_RATE)

    # Predict YAMNet classes.
    # Second output is log-mel-spectrogram array (used for visualizations).
    # (steps=1 is a work around for Keras batching limitations.)
54
55
    with graph.as_default():
      scores, _ = yamnet.predict(np.reshape(waveform, [1, -1]), steps=1)
56
57
58
59
60
61
62
63
64
65
66
67
    # Scores is a matrix of (time_frames, num_classes) classifier scores.
    # Average them along time to get an overall classifier output for the clip.
    prediction = np.mean(scores, axis=0)
    # Report the highest-scoring classes and their scores.
    top5_i = np.argsort(prediction)[::-1][:5]
    print(file_name, ':\n' + 
          '\n'.join('  {:12s}: {:.3f}'.format(yamnet_classes[i], prediction[i])
                    for i in top5_i))


if __name__ == '__main__':
  main(sys.argv[1:])