"examples/research_projects/rdm/pipeline_rdm.py" did not exist on "f7ebe56921f69c05a9273dae4755490a9c51ce12"
distribute_utils.py 7.57 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Hongkun Yu's avatar
Hongkun Yu committed
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
"""Helper functions for running models in a distributed setting."""

import json
import os
import tensorflow as tf


def _collective_communication(all_reduce_alg):
  """Return a CollectiveCommunication based on all_reduce_alg.

  Args:
    all_reduce_alg: a string specifying which collective communication to pick,
      or None.

  Returns:
    tf.distribute.experimental.CollectiveCommunication object

  Raises:
    ValueError: if `all_reduce_alg` not in [None, "ring", "nccl"]
  """
  collective_communication_options = {
      None: tf.distribute.experimental.CollectiveCommunication.AUTO,
      "ring": tf.distribute.experimental.CollectiveCommunication.RING,
      "nccl": tf.distribute.experimental.CollectiveCommunication.NCCL
  }
  if all_reduce_alg not in collective_communication_options:
    raise ValueError(
        "When used with `multi_worker_mirrored`, valid values for "
        "all_reduce_alg are [`ring`, `nccl`].  Supplied value: {}".format(
            all_reduce_alg))
  return collective_communication_options[all_reduce_alg]


def _mirrored_cross_device_ops(all_reduce_alg, num_packs):
  """Return a CrossDeviceOps based on all_reduce_alg and num_packs.

  Args:
    all_reduce_alg: a string specifying which cross device op to pick, or None.
    num_packs: an integer specifying number of packs for the cross device op.

  Returns:
    tf.distribute.CrossDeviceOps object or None.

  Raises:
    ValueError: if `all_reduce_alg` not in [None, "nccl", "hierarchical_copy"].
  """
  if all_reduce_alg is None:
    return None
  mirrored_all_reduce_options = {
      "nccl": tf.distribute.NcclAllReduce,
      "hierarchical_copy": tf.distribute.HierarchicalCopyAllReduce
  }
  if all_reduce_alg not in mirrored_all_reduce_options:
    raise ValueError(
        "When used with `mirrored`, valid values for all_reduce_alg are "
        "[`nccl`, `hierarchical_copy`].  Supplied value: {}".format(
            all_reduce_alg))
  cross_device_ops_class = mirrored_all_reduce_options[all_reduce_alg]
  return cross_device_ops_class(num_packs=num_packs)


def tpu_initialize(tpu_address):
  """Initializes TPU for TF 2.x training.

  Args:
    tpu_address: string, bns address of master TPU worker.

  Returns:
    A TPUClusterResolver.
  """
  cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
      tpu=tpu_address)
  if tpu_address not in ("", "local"):
    tf.config.experimental_connect_to_cluster(cluster_resolver)
  tf.tpu.experimental.initialize_tpu_system(cluster_resolver)
  return cluster_resolver


def get_distribution_strategy(distribution_strategy="mirrored",
                              num_gpus=0,
                              all_reduce_alg=None,
                              num_packs=1,
Hongkun Yu's avatar
Hongkun Yu committed
97
98
                              tpu_address=None,
                              **kwargs):
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
  """Return a DistributionStrategy for running the model.

  Args:
    distribution_strategy: a string specifying which distribution strategy to
      use. Accepted values are "off", "one_device", "mirrored",
      "parameter_server", "multi_worker_mirrored", and "tpu" -- case
      insensitive. "off" means not to use Distribution Strategy; "tpu" means to
      use TPUStrategy using `tpu_address`.
    num_gpus: Number of GPUs to run this model.
    all_reduce_alg: Optional. Specifies which algorithm to use when performing
      all-reduce. For `MirroredStrategy`, valid values are "nccl" and
      "hierarchical_copy". For `MultiWorkerMirroredStrategy`, valid values are
      "ring" and "nccl".  If None, DistributionStrategy will choose based on
      device topology.
    num_packs: Optional.  Sets the `num_packs` in `tf.distribute.NcclAllReduce`
      or `tf.distribute.HierarchicalCopyAllReduce` for `MirroredStrategy`.
    tpu_address: Optional. String that represents TPU to connect to. Must not be
      None if `distribution_strategy` is set to `tpu`.
Hongkun Yu's avatar
Hongkun Yu committed
117
    **kwargs: Additional kwargs for internal usages.
118
119
120
121
122
123
124
125

  Returns:
    tf.distribute.DistibutionStrategy object.
  Raises:
    ValueError: if `distribution_strategy` is "off" or "one_device" and
      `num_gpus` is larger than 1; or `num_gpus` is negative or if
      `distribution_strategy` is `tpu` but `tpu_address` is not specified.
  """
Hongkun Yu's avatar
Hongkun Yu committed
126
  del kwargs
127
128
129
130
131
132
133
134
135
136
137
138
139
  if num_gpus < 0:
    raise ValueError("`num_gpus` can not be negative.")

  distribution_strategy = distribution_strategy.lower()
  if distribution_strategy == "off":
    if num_gpus > 1:
      raise ValueError("When {} GPUs are specified, distribution_strategy "
                       "flag cannot be set to `off`.".format(num_gpus))
    return None

  if distribution_strategy == "tpu":
    # When tpu_address is an empty string, we communicate with local TPUs.
    cluster_resolver = tpu_initialize(tpu_address)
140
    return tf.distribute.TPUStrategy(cluster_resolver)
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

  if distribution_strategy == "multi_worker_mirrored":
    return tf.distribute.experimental.MultiWorkerMirroredStrategy(
        communication=_collective_communication(all_reduce_alg))

  if distribution_strategy == "one_device":
    if num_gpus == 0:
      return tf.distribute.OneDeviceStrategy("device:CPU:0")
    if num_gpus > 1:
      raise ValueError("`OneDeviceStrategy` can not be used for more than "
                       "one device.")
    return tf.distribute.OneDeviceStrategy("device:GPU:0")

  if distribution_strategy == "mirrored":
    if num_gpus == 0:
      devices = ["device:CPU:0"]
    else:
      devices = ["device:GPU:%d" % i for i in range(num_gpus)]
    return tf.distribute.MirroredStrategy(
        devices=devices,
        cross_device_ops=_mirrored_cross_device_ops(all_reduce_alg, num_packs))

  if distribution_strategy == "parameter_server":
164
    return tf.compat.v1.distribute.experimental.ParameterServerStrategy()
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

  raise ValueError("Unrecognized Distribution Strategy: %r" %
                   distribution_strategy)


def configure_cluster(worker_hosts=None, task_index=-1):
  """Set multi-worker cluster spec in TF_CONFIG environment variable.

  Args:
    worker_hosts: comma-separated list of worker ip:port pairs.

  Returns:
    Number of workers in the cluster.
  """
  tf_config = json.loads(os.environ.get("TF_CONFIG", "{}"))
  if tf_config:
    num_workers = (
        len(tf_config["cluster"].get("chief", [])) +
        len(tf_config["cluster"].get("worker", [])))
  elif worker_hosts:
    workers = worker_hosts.split(",")
    num_workers = len(workers)
    if num_workers > 1 and task_index < 0:
      raise ValueError("Must specify task_index when number of workers > 1")
    task_index = 0 if num_workers == 1 else task_index
    os.environ["TF_CONFIG"] = json.dumps({
        "cluster": {
            "worker": workers
        },
        "task": {
            "type": "worker",
            "index": task_index
        }
    })
  else:
    num_workers = 1
  return num_workers


def get_strategy_scope(strategy):
  if strategy:
    strategy_scope = strategy.scope()
  else:
    strategy_scope = DummyContextManager()

  return strategy_scope


class DummyContextManager(object):

  def __enter__(self):
    pass

  def __exit__(self, *args):
    pass