sentence_prediction.py 7.71 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Sentence prediction (classification) task."""
17
from absl import logging
18
import dataclasses
19
20
21
import numpy as np
from scipy import stats
from sklearn import metrics as sklearn_metrics
22
23
24
25
26
27
28
29
30
31
32
33
34
import tensorflow as tf
import tensorflow_hub as hub

from official.core import base_task
from official.modeling.hyperparams import config_definitions as cfg
from official.nlp.configs import bert
from official.nlp.data import sentence_prediction_dataloader
from official.nlp.modeling import losses as loss_lib


@dataclasses.dataclass
class SentencePredictionConfig(cfg.TaskConfig):
  """The model config."""
Hongkun Yu's avatar
Hongkun Yu committed
35
  # At most one of `init_checkpoint` and `hub_module_url` can
36
  # be specified.
Hongkun Yu's avatar
Hongkun Yu committed
37
  init_checkpoint: str = ''
38
  hub_module_url: str = ''
39
  metric_type: str = 'accuracy'
40
  network: bert.BertPretrainerConfig = bert.BertPretrainerConfig(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
41
      num_masked_tokens=0,  # No masked language modeling head.
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
      cls_heads=[
          bert.ClsHeadConfig(
              inner_dim=768,
              num_classes=3,
              dropout_rate=0.1,
              name='sentence_prediction')
      ])
  train_data: cfg.DataConfig = cfg.DataConfig()
  validation_data: cfg.DataConfig = cfg.DataConfig()


@base_task.register_task_cls(SentencePredictionConfig)
class SentencePredictionTask(base_task.Task):
  """Task object for sentence_prediction."""

  def __init__(self, params=cfg.TaskConfig):
    super(SentencePredictionTask, self).__init__(params)
Hongkun Yu's avatar
Hongkun Yu committed
59
    if params.hub_module_url and params.init_checkpoint:
60
61
62
63
64
65
      raise ValueError('At most one of `hub_module_url` and '
                       '`pretrain_checkpoint_dir` can be specified.')
    if params.hub_module_url:
      self._hub_module = hub.load(params.hub_module_url)
    else:
      self._hub_module = None
66
    self.metric_type = params.metric_type
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

  def build_model(self):
    if self._hub_module:
      input_word_ids = tf.keras.layers.Input(
          shape=(None,), dtype=tf.int32, name='input_word_ids')
      input_mask = tf.keras.layers.Input(
          shape=(None,), dtype=tf.int32, name='input_mask')
      input_type_ids = tf.keras.layers.Input(
          shape=(None,), dtype=tf.int32, name='input_type_ids')
      bert_model = hub.KerasLayer(self._hub_module, trainable=True)
      pooled_output, sequence_output = bert_model(
          [input_word_ids, input_mask, input_type_ids])
      encoder_from_hub = tf.keras.Model(
          inputs=[input_word_ids, input_mask, input_type_ids],
          outputs=[sequence_output, pooled_output])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
82
      return bert.instantiate_bertpretrainer_from_cfg(
83
84
          self.task_config.network, encoder_network=encoder_from_hub)
    else:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
85
      return bert.instantiate_bertpretrainer_from_cfg(self.task_config.network)
86

87
  def build_losses(self, labels, model_outputs, aux_losses=None) -> tf.Tensor:
88
89
    loss = loss_lib.weighted_sparse_categorical_crossentropy_loss(
        labels=labels,
Hongkun Yu's avatar
Hongkun Yu committed
90
        predictions=tf.nn.log_softmax(
Hongkun Yu's avatar
Hongkun Yu committed
91
            tf.cast(model_outputs['sentence_prediction'], tf.float32), axis=-1))
92
93
94
95
96
97
98
99

    if aux_losses:
      loss += tf.add_n(aux_losses)
    return loss

  def build_inputs(self, params, input_context=None):
    """Returns tf.data.Dataset for sentence_prediction task."""
    if params.input_path == 'dummy':
Hongkun Yu's avatar
Hongkun Yu committed
100

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
      def dummy_data(_):
        dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32)
        x = dict(
            input_word_ids=dummy_ids,
            input_mask=dummy_ids,
            input_type_ids=dummy_ids)
        y = tf.ones((1, 1), dtype=tf.int32)
        return (x, y)

      dataset = tf.data.Dataset.range(1)
      dataset = dataset.repeat()
      dataset = dataset.map(
          dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
      return dataset

    return sentence_prediction_dataloader.SentencePredictionDataLoader(
        params).load(input_context)

  def build_metrics(self, training=None):
    del training
Hongkun Yu's avatar
Hongkun Yu committed
121
    metrics = [tf.keras.metrics.SparseCategoricalAccuracy(name='cls_accuracy')]
122
123
    return metrics

124
  def process_metrics(self, metrics, labels, model_outputs):
125
    for metric in metrics:
126
      metric.update_state(labels, model_outputs['sentence_prediction'])
127

128
129
  def process_compiled_metrics(self, compiled_metrics, labels, model_outputs):
    compiled_metrics.update_state(labels, model_outputs['sentence_prediction'])
130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
  def validation_step(self, inputs, model: tf.keras.Model, metrics=None):
    if self.metric_type == 'accuracy':
      return super(SentencePredictionTask,
                   self).validation_step(inputs, model, metrics)
    features, labels = inputs
    outputs = self.inference_step(features, model)
    loss = self.build_losses(
        labels=labels, model_outputs=outputs, aux_losses=model.losses)
    if self.metric_type == 'matthews_corrcoef':
      return {
          self.loss:
              loss,
          'sentence_prediction':
              tf.expand_dims(
                  tf.math.argmax(outputs['sentence_prediction'], axis=1),
                  axis=0),
          'labels':
              labels,
      }
    if self.metric_type == 'pearson_spearman_corr':
      return {
          self.loss: loss,
          'sentence_prediction': outputs['sentence_prediction'],
          'labels': labels,
      }

  def aggregate_logs(self, state=None, step_outputs=None):
    if state is None:
      state = {'sentence_prediction': [], 'labels': []}
    state['sentence_prediction'].append(
        np.concatenate([v.numpy() for v in step_outputs['sentence_prediction']],
                       axis=0))
    state['labels'].append(
        np.concatenate([v.numpy() for v in step_outputs['labels']], axis=0))
    return state

  def reduce_aggregated_logs(self, aggregated_logs):
    if self.metric_type == 'matthews_corrcoef':
      preds = np.concatenate(aggregated_logs['sentence_prediction'], axis=0)
      labels = np.concatenate(aggregated_logs['labels'], axis=0)
      return {
          self.metric_type: sklearn_metrics.matthews_corrcoef(preds, labels)
      }
    if self.metric_type == 'pearson_spearman_corr':
      preds = np.concatenate(aggregated_logs['sentence_prediction'], axis=0)
      labels = np.concatenate(aggregated_logs['labels'], axis=0)
      pearson_corr = stats.pearsonr(preds, labels)[0]
      spearman_corr = stats.spearmanr(preds, labels)[0]
      corr_metric = (pearson_corr + spearman_corr) / 2
      return {self.metric_type: corr_metric}

182
183
  def initialize(self, model):
    """Load a pretrained checkpoint (if exists) and then train from iter 0."""
Hongkun Yu's avatar
Hongkun Yu committed
184
185
186
187
    ckpt_dir_or_file = self.task_config.init_checkpoint
    if tf.io.gfile.isdir(ckpt_dir_or_file):
      ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)
    if not ckpt_dir_or_file:
188
189
190
191
192
193
194
195
196
      return

    pretrain2finetune_mapping = {
        'encoder':
            model.checkpoint_items['encoder'],
        'next_sentence.pooler_dense':
            model.checkpoint_items['sentence_prediction.pooler_dense'],
    }
    ckpt = tf.train.Checkpoint(**pretrain2finetune_mapping)
Hongkun Yu's avatar
Hongkun Yu committed
197
    status = ckpt.restore(ckpt_dir_or_file)
198
    status.expect_partial().assert_existing_objects_matched()
Hongkun Yu's avatar
Hongkun Yu committed
199
200
    logging.info('finished loading pretrained checkpoint from %s',
                 ckpt_dir_or_file)