"vscode:/vscode.git/clone" did not exist on "1a1c99e3346da21bf2062fa266cf39da954c66a8"
config_util.py 20.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions for reading and updating configuration files."""

17
import os
18
19
20
21
import tensorflow as tf

from google.protobuf import text_format

22
23
from tensorflow.python.lib.io import file_io

24
25
26
27
28
29
30
from object_detection.protos import eval_pb2
from object_detection.protos import input_reader_pb2
from object_detection.protos import model_pb2
from object_detection.protos import pipeline_pb2
from object_detection.protos import train_pb2


31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
def get_image_resizer_config(model_config):
  """Returns the image resizer config from a model config.

  Args:
    model_config: A model_pb2.DetectionModel.

  Returns:
    An image_resizer_pb2.ImageResizer.

  Raises:
    ValueError: If the model type is not recognized.
  """
  meta_architecture = model_config.WhichOneof("model")
  if meta_architecture == "faster_rcnn":
    return model_config.faster_rcnn.image_resizer
  if meta_architecture == "ssd":
    return model_config.ssd.image_resizer

  raise ValueError("Unknown model type: {}".format(meta_architecture))


def get_spatial_image_size(image_resizer_config):
  """Returns expected spatial size of the output image from a given config.

  Args:
    image_resizer_config: An image_resizer_pb2.ImageResizer.

  Returns:
    A list of two integers of the form [height, width]. `height` and `width` are
    set  -1 if they cannot be determined during graph construction.

  Raises:
    ValueError: If the model type is not recognized.
  """
  if image_resizer_config.HasField("fixed_shape_resizer"):
    return [image_resizer_config.fixed_shape_resizer.height,
            image_resizer_config.fixed_shape_resizer.width]
  if image_resizer_config.HasField("keep_aspect_ratio_resizer"):
    if image_resizer_config.keep_aspect_ratio_resizer.pad_to_max_dimension:
      return [image_resizer_config.keep_aspect_ratio_resizer.max_dimension] * 2
    else:
      return [-1, -1]
  raise ValueError("Unknown image resizer type.")


76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
def get_configs_from_pipeline_file(pipeline_config_path):
  """Reads configuration from a pipeline_pb2.TrainEvalPipelineConfig.

  Args:
    pipeline_config_path: Path to pipeline_pb2.TrainEvalPipelineConfig text
      proto.

  Returns:
    Dictionary of configuration objects. Keys are `model`, `train_config`,
      `train_input_config`, `eval_config`, `eval_input_config`. Value are the
      corresponding config objects.
  """
  pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
  with tf.gfile.GFile(pipeline_config_path, "r") as f:
    proto_str = f.read()
    text_format.Merge(proto_str, pipeline_config)

  configs = {}
  configs["model"] = pipeline_config.model
  configs["train_config"] = pipeline_config.train_config
  configs["train_input_config"] = pipeline_config.train_input_reader
  configs["eval_config"] = pipeline_config.eval_config
  configs["eval_input_config"] = pipeline_config.eval_input_reader

  return configs


def create_pipeline_proto_from_configs(configs):
  """Creates a pipeline_pb2.TrainEvalPipelineConfig from configs dictionary.

  This function nearly performs the inverse operation of
  get_configs_from_pipeline_file(). Instead of returning a file path, it returns
  a `TrainEvalPipelineConfig` object.

  Args:
    configs: Dictionary of configs. See get_configs_from_pipeline_file().

  Returns:
    A fully populated pipeline_pb2.TrainEvalPipelineConfig.
  """
  pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
  pipeline_config.model.CopyFrom(configs["model"])
  pipeline_config.train_config.CopyFrom(configs["train_config"])
  pipeline_config.train_input_reader.CopyFrom(configs["train_input_config"])
  pipeline_config.eval_config.CopyFrom(configs["eval_config"])
  pipeline_config.eval_input_reader.CopyFrom(configs["eval_input_config"])
  return pipeline_config


125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
def save_pipeline_config(pipeline_config, directory):
  """Saves a pipeline config text file to disk.

  Args:
    pipeline_config: A pipeline_pb2.TrainEvalPipelineConfig.
    directory: The model directory into which the pipeline config file will be
      saved.
  """
  if not file_io.file_exists(directory):
    file_io.recursive_create_dir(directory)
  pipeline_config_path = os.path.join(directory, "pipeline.config")
  config_text = text_format.MessageToString(pipeline_config)
  with tf.gfile.Open(pipeline_config_path, "wb") as f:
    tf.logging.info("Writing pipeline config file to %s",
                    pipeline_config_path)
    f.write(config_text)


143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
def get_configs_from_multiple_files(model_config_path="",
                                    train_config_path="",
                                    train_input_config_path="",
                                    eval_config_path="",
                                    eval_input_config_path=""):
  """Reads training configuration from multiple config files.

  Args:
    model_config_path: Path to model_pb2.DetectionModel.
    train_config_path: Path to train_pb2.TrainConfig.
    train_input_config_path: Path to input_reader_pb2.InputReader.
    eval_config_path: Path to eval_pb2.EvalConfig.
    eval_input_config_path: Path to input_reader_pb2.InputReader.

  Returns:
    Dictionary of configuration objects. Keys are `model`, `train_config`,
      `train_input_config`, `eval_config`, `eval_input_config`. Key/Values are
        returned only for valid (non-empty) strings.
  """
  configs = {}
  if model_config_path:
    model_config = model_pb2.DetectionModel()
    with tf.gfile.GFile(model_config_path, "r") as f:
      text_format.Merge(f.read(), model_config)
      configs["model"] = model_config

  if train_config_path:
    train_config = train_pb2.TrainConfig()
    with tf.gfile.GFile(train_config_path, "r") as f:
      text_format.Merge(f.read(), train_config)
      configs["train_config"] = train_config

  if train_input_config_path:
    train_input_config = input_reader_pb2.InputReader()
    with tf.gfile.GFile(train_input_config_path, "r") as f:
      text_format.Merge(f.read(), train_input_config)
      configs["train_input_config"] = train_input_config

  if eval_config_path:
    eval_config = eval_pb2.EvalConfig()
    with tf.gfile.GFile(eval_config_path, "r") as f:
      text_format.Merge(f.read(), eval_config)
      configs["eval_config"] = eval_config

  if eval_input_config_path:
    eval_input_config = input_reader_pb2.InputReader()
    with tf.gfile.GFile(eval_input_config_path, "r") as f:
      text_format.Merge(f.read(), eval_input_config)
      configs["eval_input_config"] = eval_input_config

  return configs


def get_number_of_classes(model_config):
  """Returns the number of classes for a detection model.

  Args:
    model_config: A model_pb2.DetectionModel.

  Returns:
    Number of classes.

  Raises:
    ValueError: If the model type is not recognized.
  """
  meta_architecture = model_config.WhichOneof("model")
  if meta_architecture == "faster_rcnn":
    return model_config.faster_rcnn.num_classes
  if meta_architecture == "ssd":
    return model_config.ssd.num_classes

  raise ValueError("Expected the model to be one of 'faster_rcnn' or 'ssd'.")


def get_optimizer_type(train_config):
  """Returns the optimizer type for training.

  Args:
    train_config: A train_pb2.TrainConfig.

  Returns:
    The type of the optimizer
  """
  return train_config.optimizer.WhichOneof("optimizer")


def get_learning_rate_type(optimizer_config):
  """Returns the learning rate type for training.

  Args:
    optimizer_config: An optimizer_pb2.Optimizer.

  Returns:
    The type of the learning rate.
  """
  return optimizer_config.learning_rate.WhichOneof("learning_rate")


def merge_external_params_with_configs(configs, hparams=None, **kwargs):
  """Updates `configs` dictionary based on supplied parameters.

  This utility is for modifying specific fields in the object detection configs.
  Say that one would like to experiment with different learning rates, momentum
  values, or batch sizes. Rather than creating a new config text file for each
  experiment, one can use a single base config file, and update particular
  values.

  Args:
    configs: Dictionary of configuration objects. See outputs from
      get_configs_from_pipeline_file() or get_configs_from_multiple_files().
    hparams: A `HParams`.
    **kwargs: Extra keyword arguments that are treated the same way as
      attribute/value pairs in `hparams`. Note that hyperparameters with the
      same names will override keyword arguments.

  Returns:
    `configs` dictionary.
  """

  if hparams:
    kwargs.update(hparams.values())
Vivek Rathod's avatar
Vivek Rathod committed
264
  for key, value in kwargs.items():
265
266
267
268
    # pylint: disable=g-explicit-bool-comparison
    if value == "" or value is None:
      continue
    # pylint: enable=g-explicit-bool-comparison
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
    if key == "learning_rate":
      _update_initial_learning_rate(configs, value)
      tf.logging.info("Overwriting learning rate: %f", value)
    if key == "batch_size":
      _update_batch_size(configs, value)
      tf.logging.info("Overwriting batch size: %d", value)
    if key == "momentum_optimizer_value":
      _update_momentum_optimizer_value(configs, value)
      tf.logging.info("Overwriting momentum optimizer value: %f", value)
    if key == "classification_localization_weight_ratio":
      # Localization weight is fixed to 1.0.
      _update_classification_localization_weight_ratio(configs, value)
    if key == "focal_loss_gamma":
      _update_focal_loss_gamma(configs, value)
    if key == "focal_loss_alpha":
      _update_focal_loss_alpha(configs, value)
    if key == "train_steps":
      _update_train_steps(configs, value)
      tf.logging.info("Overwriting train steps: %d", value)
    if key == "eval_steps":
      _update_eval_steps(configs, value)
      tf.logging.info("Overwriting eval steps: %d", value)
    if key == "train_input_path":
      _update_input_path(configs["train_input_config"], value)
      tf.logging.info("Overwriting train input path: %s", value)
    if key == "eval_input_path":
      _update_input_path(configs["eval_input_config"], value)
      tf.logging.info("Overwriting eval input path: %s", value)
    if key == "label_map_path":
298
299
      _update_label_map_path(configs, value)
      tf.logging.info("Overwriting label map path: %s", value)
300
301
302
    if key == "mask_type":
      _update_mask_type(configs, value)
      tf.logging.info("Overwritten mask type: %s", value)
303
304
305
306
307
308
  return configs


def _update_initial_learning_rate(configs, learning_rate):
  """Updates `configs` to reflect the new initial learning rate.

309
310
311
  This function updates the initial learning rate. For learning rate schedules,
  all other defined learning rates in the pipeline config are scaled to maintain
  their same ratio with the initial learning rate.
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
  The configs dictionary is updated in place, and hence not returned.

  Args:
    configs: Dictionary of configuration objects. See outputs from
      get_configs_from_pipeline_file() or get_configs_from_multiple_files().
    learning_rate: Initial learning rate for optimizer.

  Raises:
    TypeError: if optimizer type is not supported, or if learning rate type is
      not supported.
  """

  optimizer_type = get_optimizer_type(configs["train_config"])
  if optimizer_type == "rms_prop_optimizer":
    optimizer_config = configs["train_config"].optimizer.rms_prop_optimizer
  elif optimizer_type == "momentum_optimizer":
    optimizer_config = configs["train_config"].optimizer.momentum_optimizer
  elif optimizer_type == "adam_optimizer":
    optimizer_config = configs["train_config"].optimizer.adam_optimizer
  else:
    raise TypeError("Optimizer %s is not supported." % optimizer_type)

  learning_rate_type = get_learning_rate_type(optimizer_config)
  if learning_rate_type == "constant_learning_rate":
    constant_lr = optimizer_config.learning_rate.constant_learning_rate
    constant_lr.learning_rate = learning_rate
  elif learning_rate_type == "exponential_decay_learning_rate":
    exponential_lr = (
        optimizer_config.learning_rate.exponential_decay_learning_rate)
    exponential_lr.initial_learning_rate = learning_rate
  elif learning_rate_type == "manual_step_learning_rate":
    manual_lr = optimizer_config.learning_rate.manual_step_learning_rate
    original_learning_rate = manual_lr.initial_learning_rate
    learning_rate_scaling = float(learning_rate) / original_learning_rate
    manual_lr.initial_learning_rate = learning_rate
    for schedule in manual_lr.schedule:
      schedule.learning_rate *= learning_rate_scaling
349
350
351
352
353
354
355
  elif learning_rate_type == "cosine_decay_learning_rate":
    cosine_lr = optimizer_config.learning_rate.cosine_decay_learning_rate
    learning_rate_base = cosine_lr.learning_rate_base
    warmup_learning_rate = cosine_lr.warmup_learning_rate
    warmup_scale_factor = warmup_learning_rate / learning_rate_base
    cosine_lr.learning_rate_base = learning_rate
    cosine_lr.warmup_learning_rate = warmup_scale_factor * learning_rate
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
  else:
    raise TypeError("Learning rate %s is not supported." % learning_rate_type)


def _update_batch_size(configs, batch_size):
  """Updates `configs` to reflect the new training batch size.

  The configs dictionary is updated in place, and hence not returned.

  Args:
    configs: Dictionary of configuration objects. See outputs from
      get_configs_from_pipeline_file() or get_configs_from_multiple_files().
    batch_size: Batch size to use for training (Ideally a power of 2). Inputs
      are rounded, and capped to be 1 or greater.
  """
  configs["train_config"].batch_size = max(1, int(round(batch_size)))


def _update_momentum_optimizer_value(configs, momentum):
  """Updates `configs` to reflect the new momentum value.

  Momentum is only supported for RMSPropOptimizer and MomentumOptimizer. For any
  other optimizer, no changes take place. The configs dictionary is updated in
  place, and hence not returned.

  Args:
    configs: Dictionary of configuration objects. See outputs from
      get_configs_from_pipeline_file() or get_configs_from_multiple_files().
    momentum: New momentum value. Values are clipped at 0.0 and 1.0.

  Raises:
    TypeError: If the optimizer type is not `rms_prop_optimizer` or
    `momentum_optimizer`.
  """
  optimizer_type = get_optimizer_type(configs["train_config"])
  if optimizer_type == "rms_prop_optimizer":
    optimizer_config = configs["train_config"].optimizer.rms_prop_optimizer
  elif optimizer_type == "momentum_optimizer":
    optimizer_config = configs["train_config"].optimizer.momentum_optimizer
  else:
    raise TypeError("Optimizer type must be one of `rms_prop_optimizer` or "
                    "`momentum_optimizer`.")

  optimizer_config.momentum_optimizer_value = min(max(0.0, momentum), 1.0)


def _update_classification_localization_weight_ratio(configs, ratio):
  """Updates the classification/localization weight loss ratio.

  Detection models usually define a loss weight for both classification and
  objectness. This function updates the weights such that the ratio between
  classification weight to localization weight is the ratio provided.
  Arbitrarily, localization weight is set to 1.0.

  Note that in the case of Faster R-CNN, this same ratio is applied to the first
  stage objectness loss weight relative to localization loss weight.

  The configs dictionary is updated in place, and hence not returned.

  Args:
    configs: Dictionary of configuration objects. See outputs from
      get_configs_from_pipeline_file() or get_configs_from_multiple_files().
    ratio: Desired ratio of classification (and/or objectness) loss weight to
      localization loss weight.
  """
  meta_architecture = configs["model"].WhichOneof("model")
  if meta_architecture == "faster_rcnn":
    model = configs["model"].faster_rcnn
    model.first_stage_localization_loss_weight = 1.0
    model.first_stage_objectness_loss_weight = ratio
    model.second_stage_localization_loss_weight = 1.0
    model.second_stage_classification_loss_weight = ratio
  if meta_architecture == "ssd":
    model = configs["model"].ssd
    model.loss.localization_weight = 1.0
    model.loss.classification_weight = ratio


def _get_classification_loss(model_config):
  """Returns the classification loss for a model."""
  meta_architecture = model_config.WhichOneof("model")
  if meta_architecture == "faster_rcnn":
    model = model_config.faster_rcnn
    classification_loss = model.second_stage_classification_loss
  if meta_architecture == "ssd":
    model = model_config.ssd
    classification_loss = model.loss.classification_loss
  else:
    raise TypeError("Did not recognize the model architecture.")
  return classification_loss


def _update_focal_loss_gamma(configs, gamma):
  """Updates the gamma value for a sigmoid focal loss.

  The configs dictionary is updated in place, and hence not returned.

  Args:
    configs: Dictionary of configuration objects. See outputs from
      get_configs_from_pipeline_file() or get_configs_from_multiple_files().
    gamma: Exponent term in focal loss.

  Raises:
    TypeError: If the classification loss is not `weighted_sigmoid_focal`.
  """
  classification_loss = _get_classification_loss(configs["model"])
  classification_loss_type = classification_loss.WhichOneof(
      "classification_loss")
  if classification_loss_type != "weighted_sigmoid_focal":
    raise TypeError("Classification loss must be `weighted_sigmoid_focal`.")
  classification_loss.weighted_sigmoid_focal.gamma = gamma


def _update_focal_loss_alpha(configs, alpha):
  """Updates the alpha value for a sigmoid focal loss.

  The configs dictionary is updated in place, and hence not returned.

  Args:
    configs: Dictionary of configuration objects. See outputs from
      get_configs_from_pipeline_file() or get_configs_from_multiple_files().
    alpha: Class weight multiplier for sigmoid loss.

  Raises:
    TypeError: If the classification loss is not `weighted_sigmoid_focal`.
  """
  classification_loss = _get_classification_loss(configs["model"])
  classification_loss_type = classification_loss.WhichOneof(
      "classification_loss")
  if classification_loss_type != "weighted_sigmoid_focal":
    raise TypeError("Classification loss must be `weighted_sigmoid_focal`.")
  classification_loss.weighted_sigmoid_focal.alpha = alpha


def _update_train_steps(configs, train_steps):
  """Updates `configs` to reflect new number of training steps."""
  configs["train_config"].num_steps = int(train_steps)


def _update_eval_steps(configs, eval_steps):
  """Updates `configs` to reflect new number of eval steps per evaluation."""
  configs["eval_config"].num_examples = int(eval_steps)


def _update_input_path(input_config, input_path):
  """Updates input configuration to reflect a new input path.

  The input_config object is updated in place, and hence not returned.

  Args:
    input_config: A input_reader_pb2.InputReader.
    input_path: A path to data or list of paths.

  Raises:
    TypeError: if input reader type is not `tf_record_input_reader`.
  """
  input_reader_type = input_config.WhichOneof("input_reader")
  if input_reader_type == "tf_record_input_reader":
    input_config.tf_record_input_reader.ClearField("input_path")
    if isinstance(input_path, list):
      input_config.tf_record_input_reader.input_path.extend(input_path)
    else:
      input_config.tf_record_input_reader.input_path.append(input_path)
  else:
    raise TypeError("Input reader type must be `tf_record_input_reader`.")


def _update_label_map_path(configs, label_map_path):
  """Updates the label map path for both train and eval input readers.

  The configs dictionary is updated in place, and hence not returned.

  Args:
    configs: Dictionary of configuration objects. See outputs from
      get_configs_from_pipeline_file() or get_configs_from_multiple_files().
    label_map_path: New path to `StringIntLabelMap` pbtxt file.
  """
  configs["train_input_config"].label_map_path = label_map_path
  configs["eval_input_config"].label_map_path = label_map_path
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549


def _update_mask_type(configs, mask_type):
  """Updates the mask type for both train and eval input readers.

  The configs dictionary is updated in place, and hence not returned.

  Args:
    configs: Dictionary of configuration objects. See outputs from
      get_configs_from_pipeline_file() or get_configs_from_multiple_files().
    mask_type: A string name representing a value of
      input_reader_pb2.InstanceMaskType
  """
  configs["train_input_config"].mask_type = mask_type
  configs["eval_input_config"].mask_type = mask_type