evaluator.py 11.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Detection model evaluator.

This file provides a generic evaluation method that can be used to evaluate a
DetectionModel.
"""
20

21
22
23
24
25
26
import logging
import tensorflow as tf

from object_detection import eval_util
from object_detection.core import prefetcher
from object_detection.core import standard_fields as fields
27
from object_detection.metrics import coco_evaluation
28
29
30
31
32
33
from object_detection.utils import object_detection_evaluation

# A dictionary of metric names to classes that implement the metric. The classes
# in the dictionary must implement
# utils.object_detection_evaluation.DetectionEvaluator interface.
EVAL_METRICS_CLASS_DICT = {
34
    'pascal_voc_detection_metrics':
35
        object_detection_evaluation.PascalDetectionEvaluator,
36
    'weighted_pascal_voc_detection_metrics':
37
        object_detection_evaluation.WeightedPascalDetectionEvaluator,
38
39
40
41
42
    'pascal_voc_instance_segmentation_metrics':
        object_detection_evaluation.PascalInstanceSegmentationEvaluator,
    'weighted_pascal_voc_instance_segmentation_metrics':
        object_detection_evaluation.WeightedPascalInstanceSegmentationEvaluator,
    'open_images_detection_metrics':
43
44
45
46
47
        object_detection_evaluation.OpenImagesDetectionEvaluator,
    'coco_detection_metrics':
        coco_evaluation.CocoDetectionEvaluator,
    'coco_mask_metrics':
        coco_evaluation.CocoMaskEvaluator,
48
49
}

50
51
EVAL_DEFAULT_METRIC = 'pascal_voc_detection_metrics'

52

53
54
55
56
def _extract_predictions_and_losses(model,
                                    create_input_dict_fn,
                                    ignore_groundtruth=False):
  """Constructs tensorflow detection graph and returns output tensors.
57
58
59
60
61
62
63

  Args:
    model: model to perform predictions with.
    create_input_dict_fn: function to create input tensor dictionaries.
    ignore_groundtruth: whether groundtruth should be ignored.

  Returns:
64
65
66
67
68
    prediction_groundtruth_dict: A dictionary with postprocessed tensors (keyed
      by standard_fields.DetectionResultsFields) and optional groundtruth
      tensors (keyed by standard_fields.InputDataFields).
    losses_dict: A dictionary containing detection losses. This is empty when
      ignore_groundtruth is true.
69
70
71
72
73
  """
  input_dict = create_input_dict_fn()
  prefetch_queue = prefetcher.prefetch(input_dict, capacity=500)
  input_dict = prefetch_queue.dequeue()
  original_image = tf.expand_dims(input_dict[fields.InputDataFields.image], 0)
74
75
76
77
  preprocessed_image, true_image_shapes = model.preprocess(
      tf.to_float(original_image))
  prediction_dict = model.predict(preprocessed_image, true_image_shapes)
  detections = model.postprocess(prediction_dict, true_image_shapes)
78

79
  groundtruth = None
80
  losses_dict = {}
81
  if not ignore_groundtruth:
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    groundtruth = {
        fields.InputDataFields.groundtruth_boxes:
            input_dict[fields.InputDataFields.groundtruth_boxes],
        fields.InputDataFields.groundtruth_classes:
            input_dict[fields.InputDataFields.groundtruth_classes],
        fields.InputDataFields.groundtruth_area:
            input_dict[fields.InputDataFields.groundtruth_area],
        fields.InputDataFields.groundtruth_is_crowd:
            input_dict[fields.InputDataFields.groundtruth_is_crowd],
        fields.InputDataFields.groundtruth_difficult:
            input_dict[fields.InputDataFields.groundtruth_difficult]
    }
    if fields.InputDataFields.groundtruth_group_of in input_dict:
      groundtruth[fields.InputDataFields.groundtruth_group_of] = (
          input_dict[fields.InputDataFields.groundtruth_group_of])
97
    groundtruth_masks_list = None
98
99
100
    if fields.DetectionResultFields.detection_masks in detections:
      groundtruth[fields.InputDataFields.groundtruth_instance_masks] = (
          input_dict[fields.InputDataFields.groundtruth_instance_masks])
101
102
103
104
105
106
107
108
      groundtruth_masks_list = [
          input_dict[fields.InputDataFields.groundtruth_instance_masks]]
    groundtruth_keypoints_list = None
    if fields.DetectionResultFields.detection_keypoints in detections:
      groundtruth[fields.InputDataFields.groundtruth_keypoints] = (
          input_dict[fields.InputDataFields.groundtruth_keypoints])
      groundtruth_keypoints_list = [
          input_dict[fields.InputDataFields.groundtruth_keypoints]]
109
110
111
112
    label_id_offset = 1
    model.provide_groundtruth(
        [input_dict[fields.InputDataFields.groundtruth_boxes]],
        [tf.one_hot(input_dict[fields.InputDataFields.groundtruth_classes]
113
114
                    - label_id_offset, depth=model.num_classes)],
        groundtruth_masks_list, groundtruth_keypoints_list)
115
116
117
    losses_dict.update(model.loss(prediction_dict, true_image_shapes))

  result_dict = eval_util.result_dict_for_single_example(
118
119
120
121
122
123
124
      original_image,
      input_dict[fields.InputDataFields.source_id],
      detections,
      groundtruth,
      class_agnostic=(
          fields.DetectionResultFields.detection_classes not in detections),
      scale_to_absolute=True)
125
  return result_dict, losses_dict
126
127
128
129
130
131
132
133
134
135
136
137
138
139


def get_evaluators(eval_config, categories):
  """Returns the evaluator class according to eval_config, valid for categories.

  Args:
    eval_config: evaluation configurations.
    categories: a list of categories to evaluate.
  Returns:
    An list of instances of DetectionEvaluator.

  Raises:
    ValueError: if metric is not in the metric class dictionary.
  """
140
141
142
143
144
145
146
  eval_metric_fn_keys = eval_config.metrics_set
  if not eval_metric_fn_keys:
    eval_metric_fn_keys = [EVAL_DEFAULT_METRIC]
  evaluators_list = []
  for eval_metric_fn_key in eval_metric_fn_keys:
    if eval_metric_fn_key not in EVAL_METRICS_CLASS_DICT:
      raise ValueError('Metric not found: {}'.format(eval_metric_fn_key))
Zhichao Lu's avatar
Zhichao Lu committed
147
148
    evaluators_list.append(
        EVAL_METRICS_CLASS_DICT[eval_metric_fn_key](categories=categories))
149
  return evaluators_list
150
151
152


def evaluate(create_input_dict_fn, create_model_fn, eval_config, categories,
153
             checkpoint_dir, eval_dir, graph_hook_fn=None, evaluator_list=None):
154
155
156
157
158
159
160
161
162
163
  """Evaluation function for detection models.

  Args:
    create_input_dict_fn: a function to create a tensor input dictionary.
    create_model_fn: a function that creates a DetectionModel.
    eval_config: a eval_pb2.EvalConfig protobuf.
    categories: a list of category dictionaries. Each dict in the list should
                have an integer 'id' field and string 'name' field.
    checkpoint_dir: directory to load the checkpoints to evaluate from.
    eval_dir: directory to write evaluation metrics summary to.
164
165
166
167
    graph_hook_fn: Optional function that is called after the training graph is
      completely built. This is helpful to perform additional changes to the
      training graph such as optimizing batchnorm. The function should modify
      the default graph.
168
169
    evaluator_list: Optional list of instances of DetectionEvaluator. If not
      given, this list of metrics is created according to the eval_config.
170
171
172
173

  Returns:
    metrics: A dictionary containing metric names and values from the latest
      run.
174
175
176
177
178
179
180
181
  """

  model = create_model_fn()

  if eval_config.ignore_groundtruth and not eval_config.export_path:
    logging.fatal('If ignore_groundtruth=True then an export_path is '
                  'required. Aborting!!!')

182
  tensor_dict, losses_dict = _extract_predictions_and_losses(
183
184
185
186
      model=model,
      create_input_dict_fn=create_input_dict_fn,
      ignore_groundtruth=eval_config.ignore_groundtruth)

187
188
189
  def _process_batch(tensor_dict, sess, batch_index, counters,
                     losses_dict=None):
    """Evaluates tensors in tensor_dict, losses_dict and visualizes examples.
190
191
192
193
194
195
196
197
198
199
200
201
202

    This function calls sess.run on tensor_dict, evaluating the original_image
    tensor only on the first K examples and visualizing detections overlaid
    on this original_image.

    Args:
      tensor_dict: a dictionary of tensors
      sess: tensorflow session
      batch_index: the index of the batch amongst all batches in the run.
      counters: a dictionary holding 'success' and 'skipped' fields which can
        be updated to keep track of number of successful and failed runs,
        respectively.  If these fields are not updated, then the success/skipped
        counter values shown at the end of evaluation will be incorrect.
203
      losses_dict: Optional dictonary of scalar loss tensors.
204
205
206

    Returns:
      result_dict: a dictionary of numpy arrays
207
208
      result_losses_dict: a dictionary of scalar losses. This is empty if input
        losses_dict is None.
209
210
    """
    try:
211
212
213
      if not losses_dict:
        losses_dict = {}
      result_dict, result_losses_dict = sess.run([tensor_dict, losses_dict])
214
215
216
217
      counters['success'] += 1
    except tf.errors.InvalidArgumentError:
      logging.info('Skipping image')
      counters['skipped'] += 1
218
      return {}, {}
219
    global_step = tf.train.global_step(sess, tf.train.get_global_step())
220
221
222
    if batch_index < eval_config.num_visualizations:
      tag = 'image-{}'.format(batch_index)
      eval_util.visualize_detection_results(
223
224
225
226
          result_dict,
          tag,
          global_step,
          categories=categories,
227
228
          summary_dir=eval_dir,
          export_dir=eval_config.visualization_export_dir,
229
230
231
232
233
234
235
236
237
          show_groundtruth=eval_config.visualize_groundtruth_boxes,
          groundtruth_box_visualization_color=eval_config.
          groundtruth_box_visualization_color,
          min_score_thresh=eval_config.min_score_threshold,
          max_num_predictions=eval_config.max_num_boxes_to_visualize,
          skip_scores=eval_config.skip_scores,
          skip_labels=eval_config.skip_labels,
          keep_image_id_for_visualization_export=eval_config.
          keep_image_id_for_visualization_export)
238
    return result_dict, result_losses_dict
239
240

  variables_to_restore = tf.global_variables()
241
  global_step = tf.train.get_or_create_global_step()
242
  variables_to_restore.append(global_step)
243
244
245

  if graph_hook_fn: graph_hook_fn()

246
247
248
249
  if eval_config.use_moving_averages:
    variable_averages = tf.train.ExponentialMovingAverage(0.0)
    variables_to_restore = variable_averages.variables_to_restore()
  saver = tf.train.Saver(variables_to_restore)
250

251
252
253
254
  def _restore_latest_checkpoint(sess):
    latest_checkpoint = tf.train.latest_checkpoint(checkpoint_dir)
    saver.restore(sess, latest_checkpoint)

255
256
257
  if not evaluator_list:
    evaluator_list = get_evaluators(eval_config, categories)

258
  metrics = eval_util.repeated_checkpoint_run(
259
260
      tensor_dict=tensor_dict,
      summary_dir=eval_dir,
261
      evaluators=evaluator_list,
262
263
264
265
266
267
      batch_processor=_process_batch,
      checkpoint_dirs=[checkpoint_dir],
      variables_to_restore=None,
      restore_fn=_restore_latest_checkpoint,
      num_batches=eval_config.num_examples,
      eval_interval_secs=eval_config.eval_interval_secs,
268
269
270
      max_number_of_evaluations=(1 if eval_config.ignore_groundtruth else
                                 eval_config.max_evals
                                 if eval_config.max_evals else None),
271
272
      master=eval_config.eval_master,
      save_graph=eval_config.save_graph,
273
274
      save_graph_dir=(eval_dir if eval_config.save_graph else ''),
      losses_dict=losses_dict)
275
276

  return metrics